The GNU C Library Reference Manual






The GNU C Library

Reference Manual

Sandra Loosemore
with
Richard M. Stallman, Roland McGrath, Andrew Oram, and Ulrich Drepper

Edition 0.10
last updated 2001-07-06

for version 2.3.x



Copyright (©) 1993, 1994, 1995, 1996, 1997, 1998, 2001, 2002 Free Software Foundation, Inc.

Published by the Free Software Foundation
59 Temple Place — Suite 330,

Boston, MA 02111-1307 USA

ISBN 1-882114-55-8

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being "Free Software Needs Free
Documentation" and "GNU Lesser General Public License", the Front-Cover texts being
(a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license
is included in the section entitled "GNU Free Documentation License".

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Cover art for the Free Software Foundation’s printed edition by Etienne Suvasa.



Chapter 1: Introduction 1

1 Introduction

The C language provides no built-in facilities for performing such common operations as
input/output, memory management, string manipulation, and the like. Instead, these fa-
cilities are defined in a standard library, which you compile and link with your programs.

The GNU C library, described in this document, defines all of the library functions that
are specified by the ISO C standard, as well as additional features specific to POSIX and
other derivatives of the Unix operating system, and extensions specific to the GNU system.

The purpose of this manual is to tell you how to use the facilities of the GNU library.
We have mentioned which features belong to which standards to help you identify things
that are potentially non-portable to other systems. But the emphasis in this manual is not
on strict portability.

1.1 Getting Started

This manual is written with the assumption that you are at least somewhat familiar with
the C programming language and basic programming concepts. Specifically, familiarity
with ISO standard C (see Section 1.2.1 [ISO C], page 2), rather than “traditional” pre-ISO
C dialects, is assumed.

The GNU C library includes several header files, each of which provides definitions and
declarations for a group of related facilities; this information is used by the C compiler
when processing your program. For example, the header file ‘stdio.h’ declares facilities
for performing input and output, and the header file ‘string.h’ declares string processing
utilities. The organization of this manual generally follows the same division as the header
files.

If you are reading this manual for the first time, you should read all of the introductory
material and skim the remaining chapters. There are a lot of functions in the GNU C
library and it’s not realistic to expect that you will be able to remember exactly how to
use each and every one of them. It’s more important to become generally familiar with the
kinds of facilities that the library provides, so that when you are writing your programs you
can recognize when to make use of library functions, and where in this manual you can find
more specific information about them.

1.2 Standards and Portability

This section discusses the various standards and other sources that the GNU C library is
based upon. These sources include the ISO C and POSIX standards, and the System V
and Berkeley Unix implementations.

The primary focus of this manual is to tell you how to make effective use of the GNU
library facilities. But if you are concerned about making your programs compatible with
these standards, or portable to operating systems other than GNU, this can affect how you
use the library. This section gives you an overview of these standards, so that you will know
what they are when they are mentioned in other parts of the manual.

See Appendix B [Summary of Library Facilities], page 831, for an alphabetical list of the
functions and other symbols provided by the library. This list also states which standards
each function or symbol comes from.



2 The GNU C Library

1.2.1 ISO C

The GNU C library is compatible with the C standard adopted by the American National
Standards Institute (ANSI): American National Standard X3.159-1989—“ANSI C” and
later by the International Standardization Organization (ISO): ISO/IEC 9899:1990, “Pro-
gramming languages—C”. We here refer to the standard as ISO C since this is the more
general standard in respect of ratification. The header files and library facilities that make
up the GNU library are a superset of those specified by the ISO C standard.

If you are concerned about strict adherence to the ISO C standard, you should use the
‘-ansi’ option when you compile your programs with the GNU C compiler. This tells
the compiler to define only [SO standard features from the library header files, unless you
explicitly ask for additional features. See Section 1.3.4 [Feature Test Macros], page 7, for
information on how to do this.

Being able to restrict the library to include only ISO C features is important because
ISO C puts limitations on what names can be defined by the library implementation, and
the GNU extensions don’t fit these limitations. See Section 1.3.3 [Reserved Names|, page 5,
for more information about these restrictions.

This manual does not attempt to give you complete details on the differences between
ISO C and older dialects. It gives advice on how to write programs to work portably under
multiple C dialects, but does not aim for completeness.

1.2.2 POSIX (The Portable Operating System Interface)

The GNU library is also compatible with the ISO POSIX family of standards, known more
formally as the Portable Operating System Interface for Computer Environments (ISO/IEC
9945). They were also published as ANSI/IEEE Std 1003. POSIX is derived mostly from

various versions of the Unix operating system.

The library facilities specified by the POSIX standards are a superset of those required
by ISO C; POSIX specifies additional features for ISO C functions, as well as specifying
new additional functions. In general, the additional requirements and functionality defined
by the POSIX standards are aimed at providing lower-level support for a particular kind of
operating system environment, rather than general programming language support which
can run in many diverse operating system environments.

The GNU C library implements all of the functions specified in ISO/IEC 9945-1:1996,
the POSIX System Application Program Interface, commonly referred to as POSIX.1. The
primary extensions to the ISO C facilities specified by this standard include file system
interface primitives (see Chapter 14 [File System Interface], page 347), device-specific ter-
minal control functions (see Chapter 17 [Low-Level Terminal Interface], page 439), and
process control functions (see Chapter 26 [Processes], page 699).

Some facilities from ISO/IEC 9945-2:1993, the POSIX Shell and Utilities standard
(POSIX.2) are also implemented in the GNU library. These include utilities for dealing
with regular expressions and other pattern matching facilities (see Chapter 10 [Pattern
Matching], page 203).

1.2.3 Berkeley Unix

The GNU C library defines facilities from some versions of Unix which are not formally
standardized, specifically from the 4.2 BSD, 4.3 BSD, and 4.4 BSD Unix systems (also



Chapter 1: Introduction 3

known as Berkeley Unix) and from SunOS (a popular 4.2 BSD derivative that includes
some Unix System V functionality). These systems support most of the ISO C and POSIX
facilities, and 4.4 BSD and newer releases of SunOS in fact support them all.

The BSD facilities include symbolic links (see Section 14.5 [Symbolic Links], page 361),
the select function (see Section 13.8 [Waiting for Input or Output], page 316), the BSD
signal functions (see Section 24.10 [BSD Signal Handling], page 654), and sockets (see
Chapter 16 [Sockets], page 395).

1.2.4 SVID (The System V Interface Description)

The System V Interface Description (SVID) is a document describing the AT&T Unix
System V operating system. It is to some extent a superset of the POSIX standard (see
Section 1.2.2 [POSIX (The Portable Operating System Interface)], page 2).

The GNU C library defines most of the facilities required by the SVID that are not also
required by the ISO C or POSIX standards, for compatibility with System V Unix and
other Unix systems (such as SunOS) which include these facilities. However, many of the
more obscure and less generally useful facilities required by the SVID are not included. (In
fact, Unix System V itself does not provide them all.)

The supported facilities from System V include the methods for inter-process commu-
nication and shared memory, the hsearch and drand48 families of functions, fmtmsg and
several of the mathematical functions.

1.2.5 XPG (The X/Open Portability Guide)

The X/Open Portability Guide, published by the X/Open Company, Ltd., is a more gen-
eral standard than POSIX. X/Open owns the Unix copyright and the XPG specifies the
requirements for systems which are intended to be a Unix system.

The GNU C library complies to the X/Open Portability Guide, Issue 4.2, with all exten-
sions common to XSI (X/Open System Interface) compliant systems and also all X/Open
UNIX extensions.

The additions on top of POSIX are mainly derived from functionality available in
System V and BSD systems. Some of the really bad mistakes in System V systems were
corrected, though. Since fulfilling the XPG standard with the Unix extensions is a precon-
dition for getting the Unix brand chances are good that the functionality is available on
commercial systems.

1.3 Using the Library

This section describes some of the practical issues involved in using the GNU C library.

1.3.1 Header Files

Libraries for use by C programs really consist of two parts: header files that define types and
macros and declare variables and functions; and the actual library or archive that contains
the definitions of the variables and functions.

(Recall that in C, a declaration merely provides information that a function or variable
exists and gives its type. For a function declaration, information about the types of its
arguments might be provided as well. The purpose of declarations is to allow the compiler



4 The GNU C Library

to correctly process references to the declared variables and functions. A definition, on the
other hand, actually allocates storage for a variable or says what a function does.)

In order to use the facilities in the GNU C library, you should be sure that your program
source files include the appropriate header files. This is so that the compiler has declarations
of these facilities available and can correctly process references to them. Once your program
has been compiled, the linker resolves these references to the actual definitions provided in
the archive file.

Header files are included into a program source file by the ‘#include’ preprocessor
directive. The C language supports two forms of this directive; the first,

#include "header"

is typically used to include a header file header that you write yourself; this would contain
definitions and declarations describing the interfaces between the different parts of your
particular application. By contrast,

#include <file.h>

is typically used to include a header file ‘file.h’ that contains definitions and declarations
for a standard library. This file would normally be installed in a standard place by your
system administrator. You should use this second form for the C library header files.

Typically, ‘#include’ directives are placed at the top of the C source file, before any
other code. If you begin your source files with some comments explaining what the code in
the file does (a good idea), put the ‘#include’ directives immediately afterwards, following
the feature test macro definition (see Section 1.3.4 [Feature Test Macros|, page 7).

For more information about the use of header files and ‘#include’ directives, see section
“Header Files” in The GNU C Preprocessor Manual.

The GNU C library provides several header files, each of which contains the type and
macro definitions and variable and function declarations for a group of related facilities.
This means that your programs may need to include several header files, depending on
exactly which facilities you are using.

Some library header files include other library header files automatically. However, as a
matter of programming style, you should not rely on this; it is better to explicitly include all
the header files required for the library facilities you are using. The GNU C library header
files have been written in such a way that it doesn’t matter if a header file is accidentally
included more than once; including a header file a second time has no effect. Likewise, if
your program needs to include multiple header files, the order in which they are included
doesn’t matter.

Compatibility Note: Inclusion of standard header files in any order and any number of
times works in any ISO C implementation. However, this has traditionally not been the
case in many older C implementations.

Strictly speaking, you don’t have to include a header file to use a function it declares;
you could declare the function explicitly yourself, according to the specifications in this
manual. But it is usually better to include the header file because it may define types and
macros that are not otherwise available and because it may define more efficient macro
replacements for some functions. It is also a sure way to have the correct declaration.



Chapter 1: Introduction )

1.3.2 Macro Definitions of Functions

If we describe something as a function in this manual, it may have a macro definition as
well. This normally has no effect on how your program runs—the macro definition does
the same thing as the function would. In particular, macro equivalents for library functions
evaluate arguments exactly once, in the same way that a function call would. The main
reason for these macro definitions is that sometimes they can produce an inline expansion
that is considerably faster than an actual function call.

Taking the address of a library function works even if it is also defined as a macro. This
is because, in this context, the name of the function isn’t followed by the left parenthesis
that is syntactically necessary to recognize a macro call.

You might occasionally want to avoid using the macro definition of a function—perhaps
to make your program easier to debug. There are two ways you can do this:
e You can avoid a macro definition in a specific use by enclosing the name of the function
in parentheses. This works because the name of the function doesn’t appear in a
syntactic context where it is recognizable as a macro call.

e You can suppress any macro definition for a whole source file by using the ‘#undef’
preprocessor directive, unless otherwise stated explicitly in the description of that fa-
cility.

For example, suppose the header file ‘stdlib.h’ declares a function named abs with
extern int abs (int);
and also provides a macro definition for abs. Then, in:
#include <stdlib.h>
int £ (int *i) { return abs (++*i); }
the reference to abs might refer to either a macro or a function. On the other hand, in each
of the following examples the reference is to a function and not a macro.

#include <stdlib.h>
int g (int #i) { return (abs) (++*i); }

#undef abs
int h (int *i) { return abs (++xi); }
Since macro definitions that double for a function behave in exactly the same way as the
actual function version, there is usually no need for any of these methods. In fact, removing
macro definitions usually just makes your program slower.

1.3.3 Reserved Names

The names of all library types, macros, variables and functions that come from the ISO C
standard are reserved unconditionally; your program may not redefine these names. All
other library names are reserved if your program explicitly includes the header file that
defines or declares them. There are several reasons for these restrictions:

e Other people reading your code could get very confused if you were using a function
named exit to do something completely different from what the standard exit function
does, for example. Preventing this situation helps to make your programs easier to
understand and contributes to modularity and maintainability.

e [t avoids the possibility of a user accidentally redefining a library function that is called
by other library functions. If redefinition were allowed, those other functions would not
work properly.



The GNU C Library

It allows the compiler to do whatever special optimizations it pleases on calls to these
functions, without the possibility that they may have been redefined by the user. Some
library facilities, such as those for dealing with variadic arguments (see Section A.2
[Variadic Functions], page 816) and non-local exits (see Chapter 23 [Non-Local Exits],
page 603), actually require a considerable amount of cooperation on the part of the C
compiler, and with respect to the implementation, it might be easier for the compiler
to treat these as built-in parts of the language.

In addition to the names documented in this manual, reserved names include all external

identifiers (global functions and variables) that begin with an underscore (‘_’) and all iden-
tifiers regardless of use that begin with either two underscores or an underscore followed by

a C

apital letter are reserved names. This is so that the library and header files can define

functions, variables, and macros for internal purposes without risk of conflict with names
in user programs.

Some additional classes of identifier names are reserved for future extensions to the C

language or the POSIX.1 environment. While using these names for your own purposes
right now might not cause a problem, they do raise the possibility of conflict with future
versions of the C or POSIX standards, so you should avoid these names.

Names beginning with a capital ‘E’ followed a digit or uppercase letter may be used for
additional error code names. See Chapter 2 [Error Reporting], page 13.

Names that begin with either ‘is’ or ‘to’ followed by a lowercase letter may be used
for additional character testing and conversion functions. See Chapter 4 [Character
Handling], page 65.

Names that begin with ‘LC_" followed by an uppercase letter may be used for additional
macros specifying locale attributes. See Chapter 7 [Locales and Internationalization],
page 151.

Names of all existing mathematics functions (see Chapter 19 [Mathematics], page 473)
suffixed with ‘£’ or ‘1’ are reserved for corresponding functions that operate on float
and long double arguments, respectively.

Names that begin with ‘SIG’ followed by an uppercase letter are reserved for additional
signal names. See Section 24.2 [Standard Signals], page 615.

Names that begin with ‘SIG_’ followed by an uppercase letter are reserved for additional
signal actions. See Section 24.3.1 [Basic Signal Handling], page 623.

Names beginning with ‘str’, ‘mem’, or ‘wcs’ followed by a lowercase letter are reserved
for additional string and array functions. See Chapter 5 [String and Array Utilities],
page 73.

Names that end with ‘_t’ are reserved for additional type names.

In addition, some individual header files reserve names beyond those that they actually

define. You only need to worry about these restrictions if your program includes that
particular header file.

The header file ‘dirent.h’ reserves names prefixed with ‘d_".
The header file ‘fcntl.h’ reserves names prefixed with ‘1_", ‘F_’, ‘0_’, and ‘S_’.
?

The header file ‘grp.h’ reserves names prefixed with ‘gr_’.

The header file ‘1imits.h’ reserves names suffixed with ‘_MAX’.



Chapter 1: Introduction 7

e The header file ‘pwd.h’ reserves names prefixed with ‘pw_’.

o The header file ‘signal.h’ reserves names prefixed with ‘sa_’ and ‘SA_’.
e The header file ‘sys/stat.h’ reserves names prefixed with ‘st_’ and ‘S_’.
e The header file ‘sys/times.h’ reserves names prefixed with ‘tms_’.

e The header file ‘termios.h’ reserves names prefixed with ‘c_’, ‘V’, ‘I’, ‘0’, and ‘TC’;
and names prefixed with ‘B’ followed by a digit.

1.3.4 Feature Test Macros

The exact set of features available when you compile a source file is controlled by which
feature test macros you define.

If you compile your programs using ‘gcc —ansi’, you get only the ISO C library features,
unless you explicitly request additional features by defining one or more of the feature
macros. See section “GNU CC Command Options” in The GNU CC Manual, for more
information about GCC options.

You should define these macros by using ‘#define’ preprocessor directives at the top of
your source code files. These directives must come before any #include of a system header
file. It is best to make them the very first thing in the file, preceded only by comments. You
could also use the ‘=D’ option to GCC, but it’s better if you make the source files indicate
their own meaning in a self-contained way.

This system exists to allow the library to conform to multiple standards. Although the
different standards are often described as supersets of each other, they are usually incom-
patible because larger standards require functions with names that smaller ones reserve to
the user program. This is not mere pedantry — it has been a problem in practice. For
instance, some non-GNU programs define functions named getline that have nothing to
do with this library’s getline. They would not be compilable if all features were enabled
indiscriminately.

This should not be used to verify that a program conforms to a limited standard. It is
insufficient for this purpose, as it will not protect you from including header files outside
the standard, or relying on semantics undefined within the standard.

_POSIX_SOURCE [Macro]
If you define this macro, then the functionality from the POSIX.1 standard (IEEE
Standard 1003.1) is available, as well as all of the ISO C facilities.

The state of _POSIX_SOURCE is irrelevant if you define the macro _POSIX_C_SOURCE
to a positive integer.

_POSIX_C_SOURCE [Macro]
Define this macro to a positive integer to control which POSIX functionality is made
available. The greater the value of this macro, the more functionality is made avail-
able.

If you define this macro to a value greater than or equal to 1, then the functionality
from the 1990 edition of the POSIX.1 standard (IEEE Standard 1003.1-1990) is made
available.
If you define this macro to a value greater than or equal to 2, then the functionality
from the 1992 edition of the POSIX.2 standard (IEEE Standard 1003.2-1992) is made
available.



8 The GNU C Library

If you define this macro to a value greater than or equal to 199309L, then the function-
ality from the 1993 edition of the POSIX.1b standard (IEEE Standard 1003.1b-1993)
is made available.

Greater values for _POSIX_C_SQURCE will enable future extensions. The POSIX stan-
dards process will define these values as necessary, and the GNU C Library should sup-
port them some time after they become standardized. The 1996 edition of POSIX.1
(ISO/IEC 9945-1: 1996) states that if you define _POSIX_C_SOURCE to a value greater
than or equal to 199506L, then the functionality from the 1996 edition is made avail-
able.

_BSD_SOURCE [Macro]
If you define this macro, functionality derived from 4.3 BSD Unix is included as well
as the ISO C, POSIX.1, and POSIX.2 material.

Some of the features derived from 4.3 BSD Unix conflict with the corresponding
features specified by the POSIX.1 standard. If this macro is defined, the 4.3 BSD
definitions take precedence over the POSIX definitions.

Due to the nature of some of the conflicts between 4.3 BSD and POSIX.1, you need
to use a special BSD compatibility library when linking programs compiled for BSD
compatibility. This is because some functions must be defined in two different ways,
one of them in the normal C library, and one of them in the compatibility library. If
your program defines _BSD_SOURCE, you must give the option ‘~1bsd-compat’ to the
compiler or linker when linking the program, to tell it to find functions in this special
compatibility library before looking for them in the normal C library.

_SVID_SOURCE [Macro]
If you define this macro, functionality derived from SVID is included as well as the
ISO C, POSIX.1, POSIX.2, and X/Open material.

_XOPEN_SOURCE [Macro]
_XOPEN_SOURCE_EXTENDED [Macro]
If you define this macro, functionality described in the X/Open Portability Guide is
included. This is a superset of the POSIX.1 and POSIX.2 functionality and in fact
_POSIX_SOURCE and _POSIX_C_SOURCE are automatically defined.
As the unification of all Unices, functionality only available in BSD and SVID is also
included.
If the macro _XOPEN_SOURCE_EXTENDED is also defined, even more functionality is
available. The extra functions will make all functions available which are necessary
for the X/Open Unix brand.

If the macro _XOPEN_SOURCE has the value 500 this includes all functionality described
so far plus some new definitions from the Single Unix Specification, version 2.

_LARGEFILE_SOURCE [Macro]
If this macro is defined some extra functions are available which rectify a few short-
comings in all previous standards. Specifically, the functions fseeko and ftello are
available. Without these functions the difference between the ISO C interface (fseek,
ftell) and the low-level POSIX interface (1seek) would lead to problems.

This macro was introduced as part of the Large File Support extension (LFS).



Chapter 1: Introduction 9

_LARGEFILE64_SOURCE [Macro]
If you define this macro an additional set of functions is made available which enables
32 bit systems to use files of sizes beyond the usual limit of 2GB. This interface is
not available if the system does not support files that large. On systems where the
natural file size limit is greater than 2GB (i.e., on 64 bit systems) the new functions
are identical to the replaced functions.

The new functionality is made available by a new set of types and functions which
replace the existing ones. The names of these new objects contain 64 to indicate the
intention, e.g., off_t vs. off64_t and fseeko vs. fseekob4.

This macro was introduced as part of the Large File Support extension (LFS). Tt is
a transition interface for the period when 64 bit offsets are not generally used (see
_FILE_OFFSET_BITS).

_FILE_OFFSET_BITS [Macro]
This macro determines which file system interface shall be used, one replacing the
other. Whereas _LARGEFILE64_SOURCE makes the 64 bit interface available as an
additional interface, _FILE_OFFSET_BITS allows the 64 bit interface to replace the
old interface.

If _FILE_OFFSET_BITS is undefined, or if it is defined to the value 32, nothing changes.
The 32 bit interface is used and types like off_t have a size of 32 bits on 32 bit
Systems.

If the macro is defined to the value 64, the large file interface replaces the old inter-
face. Ie., the functions are not made available under different names (as they are
with _LARGEFILE64_SOURCE). Instead the old function names now reference the new
functions, e.g., a call to fseeko now indeed calls fseeko64.

This macro should only be selected if the system provides mechanisms for handling
large files. On 64 bit systems this macro has no effect since the *64 functions are
identical to the normal functions.

This macro was introduced as part of the Large File Support extension (LFS).

_IS0C99_SOURCE [Macro]
Until the revised ISO C standard is widely adopted the new features are not auto-
matically enabled. The GNU libc nevertheless has a complete implementation of the
new standard and to enable the new features the macro _IS0C99_SOURCE should be
defined.

_GNU_SOURCE [Macro]
If you define this macro, everything is included: ISO C89, ISO C99, POSIX.1,
POSIX.2, BSD, SVID, X/Open, LFS, and GNU extensions. In the cases where
POSIX.1 conflicts with BSD, the POSIX definitions take precedence.

If you want to get the full effect of _GNU_SOURCE but make the BSD definitions take
precedence over the POSIX definitions, use this sequence of definitions:
#define _GNU_SOURCE

#define _BSD_SOURCE
#define _SVID_SOURCE



10 The GNU C Library

Note that if you do this, you must link your program with the BSD compatibility
library by passing the ‘-1bsd-compat’ option to the compiler or linker. Note: If you
forget to do this, you may get very strange errors at run time.

_REENTRANT [Macro]

_THREAD_SAFE [Macro]
If you define one of these macros, reentrant versions of several functions get declared.
Some of the functions are specified in POSIX.1c but many others are only available
on a few other systems or are unique to GNU libc. The problem is the delay in the
standardization of the thread safe C library interface.

Unlike on some other systems, no special version of the C library must be used for
linking. There is only one version but while compiling this it must have been specified
to compile as thread safe.

We recommend you use _GNU_SOURCE in new programs. If you don’t specify the ‘-ansi’
option to GCC and don’t define any of these macros explicitly, the effect is the same as
defining _POSIX_C_SOURCE to 2 and _POSIX_SOURCE, _SVID_SOURCE, and _BSD_SOURCE to
1.

When you define a feature test macro to request a larger class of features, it is harmless
to define in addition a feature test macro for a subset of those features. For example, if
you define _POSIX_C_SOURCE, then defining _POSIX_SOURCE as well has no effect. Likewise,
if you define _GNU_SOURCE, then defining either _POSIX_SOURCE or _POSIX_C_SOURCE or
_SVID_SOURCE as well has no effect.

Note, however, that the features of _BSD_SOURCE are not a subset of any of the other
feature test macros supported. This is because it defines BSD features that take precedence
over the POSIX features that are requested by the other macros. For this reason, defining
_BSD_SOURCE in addition to the other feature test macros does have an effect: it causes the
BSD features to take priority over the conflicting POSIX features.

1.4 Roadmap to the Manual

Here is an overview of the contents of the remaining chapters of this manual.

e Chapter 2 [Error Reporting], page 13, describes how errors detected by the library are
reported.

e Appendix A [C Language Facilities in the Library], page 815, contains information
about library support for standard parts of the C language, including things like the
sizeof operator and the symbolic constant NULL, how to write functions accepting
variable numbers of arguments, and constants describing the ranges and other proper-
ties of the numerical types. There is also a simple debugging mechanism which allows
you to put assertions in your code, and have diagnostic messages printed if the tests
fail.

e Chapter 3 [Virtual Memory Allocation And Paging], page 31, describes the GNU li-
brary’s facilities for managing and using virtual and real memory, including dynamic
allocation of virtual memory. If you do not know in advance how much memory your
program needs, you can allocate it dynamically instead, and manipulate it via pointers.

e Chapter 4 [Character Handling], page 65, contains information about character classi-
fication functions (such as isspace) and functions for performing case conversion.



Chapter 1: Introduction 11

e Chapter 5 [String and Array Utilities|, page 73, has descriptions of functions for ma-
nipulating strings (null-terminated character arrays) and general byte arrays, including
operations such as copying and comparison.

e Chapter 11 [Input/Output Overview|, page 223, gives an overall look at the input and
output facilities in the library, and contains information about basic concepts such as
file names.

e Chapter 12 [Input/Output on Streams|, page 229, describes I/O operations involving
streams (or FILE * objects). These are the normal C library functions from ‘stdio.h’.

e Chapter 13 [Low-Level Input/Output], page 299, contains information about I/0O op-
erations on file descriptors. File descriptors are a lower-level mechanism specific to the
Unix family of operating systems.

e Chapter 14 [File System Interface], page 347, has descriptions of operations on entire
files, such as functions for deleting and renaming them and for creating new directories.
This chapter also contains information about how you can access the attributes of a
file, such as its owner and file protection modes.

e Chapter 15 [Pipes and FIFOs|, page 389, contains information about simple inter-
process communication mechanisms. Pipes allow communication between two related
processes (such as between a parent and child), while FIFOs allow communication
between processes sharing a common file system on the same machine.

e Chapter 16 [Sockets], page 395, describes a more complicated interprocess communi-
cation mechanism that allows processes running on different machines to communicate
over a network. This chapter also contains information about Internet host addressing
and how to use the system network databases.

e Chapter 17 [Low-Level Terminal Interface], page 439, describes how you can change
the attributes of a terminal device. If you want to disable echo of characters typed by
the user, for example, read this chapter.

e Chapter 19 [Mathematics], page 473, contains information about the math library func-
tions. These include things like random-number generators and remainder functions on
integers as well as the usual trigonometric and exponential functions on floating-point
numbers.

e Chapter 20 [Low-Level Arithmetic Functions], page 517, describes functions for simple
arithmetic, analysis of floating-point values, and reading numbers from strings.

e Chapter 9 [Searching and Sorting], page 193, contains information about functions for
searching and sorting arrays. You can use these functions on any kind of array by
providing an appropriate comparison function.

e Chapter 10 [Pattern Matching], page 203, presents functions for matching regular ex-
pressions and shell file name patterns, and for expanding words as the shell does.

e Chapter 21 [Date and Time], page 549, describes functions for measuring both calendar
time and CPU time, as well as functions for setting alarms and timers.

e Chapter 6 [Character Set Handling], page 109, contains information about manipulating
characters and strings using character sets larger than will fit in the usual char data

type.



12 The GNU C Library

e Chapter 7 [Locales and Internationalization|, page 151, describes how selecting a par-
ticular country or language affects the behavior of the library. For example, the locale
affects collation sequences for strings and how monetary values are formatted.

e Chapter 23 [Non-Local Exits], page 603, contains descriptions of the setjmp and
longjmp functions. These functions provide a facility for goto-like jumps which can
jump from one function to another.

e Chapter 24 [Signal Handling], page 613, tells you all about signals—what they are, how
to establish a handler that is called when a particular kind of signal is delivered, and
how to prevent signals from arriving during critical sections of your program.

e Chapter 25 [The Basic Program/System Interface], page 657, tells how your programs
can access their command-line arguments and environment variables.

e Chapter 26 [Processes], page 699, contains information about how to start new processes
and run programs.

e Chapter 27 [Job Control], page 711, describes functions for manipulating process groups
and the controlling terminal. This material is probably only of interest if you are writing
a shell or other program which handles job control specially.

e Chapter 28 [System Databases and Name Service Switch], page 731, describes the ser-
vices which are available for looking up names in the system databases, how to deter-
mine which service is used for which database, and how these services are implemented
so that contributors can design their own services.

e Section 29.13 [User Database|, page 759, and Section 29.14 [Group Database], page 762,
tell you how to access the system user and group databases.

e Chapter 30 [System Management], page 769, describes functions for controlling and
getting information about the hardware and software configuration your program is
executing under.

e Chapter 31 [System Configuration Parameters], page 785, tells you how you can get
information about various operating system limits. Most of these parameters are pro-
vided for compatibility with POSIX.

e Appendix B [Summary of Library Facilities], page 831, gives a summary of all the
functions, variables, and macros in the library, with complete data types and function
prototypes, and says what standard or system each is derived from.

e Appendix D [Library Maintenance], page 943, explains how to build and install the
GNU C library on your system, how to report any bugs you might find, and how to
add new functions or port the library to a new system.

If you already know the name of the facility you are interested in, you can look it up
in Appendix B [Summary of Library Facilities], page 831. This gives you a summary of its
syntax and a pointer to where you can find a more detailed description. This appendix is
particularly useful if you just want to verify the order and type of arguments to a function,
for example. It also tells you what standard or system each function, variable, or macro is
derived from.



Chapter 2: Error Reporting 13

2 Error Reporting

Many functions in the GNU C library detect and report error conditions, and sometimes
your programs need to check for these error conditions. For example, when you open an
input file, you should verify that the file was actually opened correctly, and print an error
message or take other appropriate action if the call to the library function failed.

This chapter describes how the error reporting facility works. Your program should
include the header file ‘errno.h’ to use this facility.

2.1 Checking for Errors

Most library functions return a special value to indicate that they have failed. The special
value is typically -1, a null pointer, or a constant such as EOF that is defined for that
purpose. But this return value tells you only that an error has occurred. To find out what
kind of error it was, you need to look at the error code stored in the variable errno. This
variable is declared in the header file ‘errno.h’.

volatile int errmno [Variable]
The variable errno contains the system error number. You can change the value of
errno.

Since errno is declared volatile, it might be changed asynchronously by a signal
handler; see Section 24.4 [Defining Signal Handlers|, page 629. However, a properly
written signal handler saves and restores the value of errno, so you generally do not
need to worry about this possibility except when writing signal handlers.

The initial value of errno at program startup is zero. Many library functions are
guaranteed to set it to certain nonzero values when they encounter certain kinds of
errors. These error conditions are listed for each function. These functions do not
change errno when they succeed; thus, the value of errno after a successful call is
not necessarily zero, and you should not use errno to determine whether a call failed.
The proper way to do that is documented for each function. If the call failed, you
can examine errno.

Many library functions can set errno to a nonzero value as a result of calling other
library functions which might fail. You should assume that any library function might
alter errno when the function returns an error.

Portability Note: ISO C specifies errno as a “modifiable lvalue” rather than as a
variable, permitting it to be implemented as a macro. For example, its expansion
might involve a function call, like *_errno (). In fact, that is what it is on the GNU
system itself. The GNU library, on non-GNU systems, does whatever is right for the
particular system.

There are a few library functions, like sqrt and atan, that return a perfectly legiti-
mate value in case of an error, but also set errno. For these functions, if you want
to check to see whether an error occurred, the recommended method is to set errno
to zero before calling the function, and then check its value afterward.

All the error codes have symbolic names; they are macros defined in ‘errno.h’. The
names start with ‘E> and an upper-case letter or digit; you should consider names of this
form to be reserved names. See Section 1.3.3 [Reserved Names], page 5.



14 The GNU C Library

The error code values are all positive integers and are all distinct, with one exception:
EWOULDBLOCK and EAGAIN are the same. Since the values are distinct, you can use them
as labels in a switch statement; just don’t use both EWOULDBLOCK and EAGAIN. Your
program should not make any other assumptions about the specific values of these symbolic
constants.

The value of errno doesn’t necessarily have to correspond to any of these macros, since
some library functions might return other error codes of their own for other situations. The
only values that are guaranteed to be meaningful for a particular library function are the
ones that this manual lists for that function.

On non-GNU systems, almost any system call can return EFAULT if it is given an invalid
pointer as an argument. Since this could only happen as a result of a bug in your program,
and since it will not happen on the GNU system, we have saved space by not mentioning
EFAULT in the descriptions of individual functions.

In some Unix systems, many system calls can also return EFAULT if given as an argument a
pointer into the stack, and the kernel for some obscure reason fails in its attempt to extend
the stack. If this ever happens, you should probably try using statically or dynamically
allocated memory instead of stack memory on that system.

2.2 Error Codes

The error code macros are defined in the header file ‘errno.h’. All of them expand into
integer constant values. Some of these error codes can’t occur on the GNU system, but
they can occur using the GNU library on other systems.

int EPERM [Macro]
Operation not permitted; only the owner of the file (or other resource) or processes
with special privileges can perform the operation.

int ENOENT [Macro]
No such file or directory. This is a “file doesn’t exist” error for ordinary files that are
referenced in contexts where they are expected to already exist.

int ESRCH [Macro]
No process matches the specified process ID.

int EINTR [Macro]
Interrupted function call; an asynchronous signal occurred and prevented completion
of the call. When this happens, you should try the call again.

You can choose to have functions resume after a signal that is handled, rather than
failing with EINTR; see Section 24.5 [Primitives Interrupted by Signals|, page 639.

int EIO [Macro]
Input/output error; usually used for physical read or write errors.

int ENXIO [Macro]
No such device or address. The system tried to use the device represented by a file
you specified, and it couldn’t find the device. This can mean that the device file was
installed incorrectly, or that the physical device is missing or not correctly attached
to the computer.



Chapter 2: Error Reporting 15

int

int

int

int

int

int

int

int

int

int

int

int

E2BIG [Macro]
Argument list too long; used when the arguments passed to a new program being
executed with one of the exec functions (see Section 26.5 [Executing a File], page 702)
occupy too much memory space. This condition never arises in the GNU system.

ENOEXEC [Macro]
Invalid executable file format. This condition is detected by the exec functions; see
Section 26.5 [Executing a File], page 702.

EBADF [Macro]
Bad file descriptor; for example, I/O on a descriptor that has been closed or reading
from a descriptor open only for writing (or vice versa).

ECHILD [Macro]
There are no child processes. This error happens on operations that are supposed to
manipulate child processes, when there aren’t any processes to manipulate.

EDEADLK [Macro]
Deadlock avoided; allocating a system resource would have resulted in a deadlock
situation. The system does not guarantee that it will notice all such situations.
This error means you got lucky and the system noticed; it might just hang. See
Section 13.15 [File Locks], page 341, for an example.

ENOMEM [Macro]
No memory available. The system cannot allocate more virtual memory because its
capacity is full.

EACCES [Macro]
Permission denied; the file permissions do not allow the attempted operation.

EFAULT [Macro]
Bad address; an invalid pointer was detected. In the GNU system, this error never
happens; you get a signal instead.

ENOTBLK [Macro]
A file that isn’t a block special file was given in a situation that requires one. For
example, trying to mount an ordinary file as a file system in Unix gives this error.

EBUSY [Macro]
Resource busy; a system resource that can’t be shared is already in use. For example,
if you try to delete a file that is the root of a currently mounted filesystem, you get
this error.

EEXIST [Macro]
File exists; an existing file was specified in a context where it only makes sense to
specify a new file.

EXDEV [Macro]
An attempt to make an improper link across file systems was detected. This happens
not only when you use link (see Section 14.4 [Hard Links], page 360) but also when
you rename a file with rename (see Section 14.7 [Renaming Files], page 364).



16

int

int

int

int

int

int

int

int

int

int

int

int

The GNU C Library

ENODEV [Macro]
The wrong type of device was given to a function that expects a particular sort of
device.

ENOTDIR [Macro]
A file that isn’t a directory was specified when a directory is required.

EISDIR [Macro]
File is a directory; you cannot open a directory for writing, or create or remove hard
links to it.

EINVAL [Macro]
Invalid argument. This is used to indicate various kinds of problems with passing the
wrong argument to a library function.

EMFILE [Macro]
The current process has too many files open and can’t open any more. Duplicate
descriptors do count toward this limit.

In BSD and GNU, the number of open files is controlled by a resource limit that
can usually be increased. If you get this error, you might want to increase the
RLIMIT_NOFILE limit or make it unlimited; see Section 22.2 [Limiting Resource Us-
agel, page 585.

ENFILE [Macro]
There are too many distinct file openings in the entire system. Note that any number
of linked channels count as just one file opening; see Section 13.5.1 [Linked Channels],
page 310. This error never occurs in the GNU system.

ENOTTY [Macro]
Inappropriate I/O control operation, such as trying to set terminal modes on an
ordinary file.

ETXTBSY [Macro]
An attempt to execute a file that is currently open for writing, or write to a file that
is currently being executed. Often using a debugger to run a program is considered
having it open for writing and will cause this error. (The name stands for “text file
busy”.) This is not an error in the GNU system; the text is copied as necessary.

EFBIG [Macro]
File too big; the size of a file would be larger than allowed by the system.

ENOSPC [Macro]
No space left on device; write operation on a file failed because the disk is full.

ESPIPE [Macro]
Invalid seek operation (such as on a pipe).

EROFS [Macro]
An attempt was made to modify something on a read-only file system.



Chapter 2: Error Reporting 17

int EMLINK [Macro]
Too many links; the link count of a single file would become too large. rename can
cause this error if the file being renamed already has as many links as it can take (see
Section 14.7 [Renaming Files], page 364).

int EPIPE [Macro]
Broken pipe; there is no process reading from the other end of a pipe. Every library
function that returns this error code also generates a SIGPIPE signal; this signal
terminates the program if not handled or blocked. Thus, your program will never
actually see EPIPE unless it has handled or blocked SIGPIPE.

int EDOM [Macro]
Domain error; used by mathematical functions when an argument value does not fall
into the domain over which the function is defined.

int ERANGE [Macro]
Range error; used by mathematical functions when the result value is not repre-
sentable because of overflow or underflow.

int EAGAIN [Macro]
Resource temporarily unavailable; the call might work if you try again later. The
macro EWOULDBLOCK is another name for EAGAIN; they are always the same in the
GNU C library.

This error can happen in a few different situations:

e An operation that would block was attempted on an object that has non-blocking
mode selected. Trying the same operation again will block until some external
condition makes it possible to read, write, or connect (whatever the operation).
You can use select to find out when the operation will be possible; see Sec-
tion 13.8 [Waiting for Input or Output], page 316.

Portability Note: In many older Unix systems, this condition was indicated by
EWOULDBLOCK, which was a distinct error code different from EAGAIN. To make
your program portable, you should check for both codes and treat them the same.

e A temporary resource shortage made an operation impossible. fork can return
this error. It indicates that the shortage is expected to pass, so your program
can try the call again later and it may succeed. It is probably a good idea to
delay for a few seconds before trying it again, to allow time for other processes
to release scarce resources. Such shortages are usually fairly serious and affect
the whole system, so usually an interactive program should report the error to
the user and return to its command loop.

int EWOULDBLOCK [Macro]
In the GNU C library, this is another name for EAGAIN (above). The values are always
the same, on every operating system.

C libraries in many older Unix systems have EWOULDBLOCK as a separate error code.
int EINPROGRESS [Macro]

An operation that cannot complete immediately was initiated on an object that has
non-blocking mode selected. Some functions that must always block (such as connect;



18

int

int

int

int

int

int

int

int

int

int

int

int

The GNU C Library

see Section 16.9.1 [Making a Connection], page 419) never return EAGAIN. Instead,
they return EINPROGRESS to indicate that the operation has begun and will take some
time. Attempts to manipulate the object before the call completes return EALREADY.
You can use the select function to find out when the pending operation has com-
pleted; see Section 13.8 [Waiting for Input or Output], page 316.

EALREADY [Macro]
An operation is already in progress on an object that has non-blocking mode selected.

ENQTSOCK [Macro]
A file that isn’t a socket was specified when a socket is required.

EMSGSIZE [Macro]
The size of a message sent on a socket was larger than the supported maximum size.

EPROTOTYPE [Macro]
The socket type does not support the requested communications protocol.

ENOPROTOOPT [Macro]
You specified a socket option that doesn’t make sense for the particular protocol being
used by the socket. See Section 16.12 [Socket Options], page 435.

EPROTONOSUPPORT [Macro]
The socket domain does not support the requested communications protocol (perhaps
because the requested protocol is completely invalid). See Section 16.8.1 [Creating a
Socket], page 417.

ESOCKTNOSUPPORT [Macro]
The socket type is not supported.

EOPNOTSUPP [Macro]
The operation you requested is not supported. Some socket functions don’t make sense
for all types of sockets, and others may not be implemented for all communications
protocols. In the GNU system, this error can happen for many calls when the object
does not support the particular operation; it is a generic indication that the server
knows nothing to do for that call.

EPFNOSUPPORT [Macro]
The socket communications protocol family you requested is not supported.

EAFNOSUPPORT [Macro]
The address family specified for a socket is not supported; it is inconsistent with the
protocol being used on the socket. See Chapter 16 [Sockets], page 395.

EADDRINUSE [Macro]
The requested socket address is already in use. See Section 16.3 [Socket Addresses],
page 397.

EADDRNOTAVAIL [Macro]
The requested socket address is not available; for example, you tried to give a socket
a name that doesn’t match the local host name. See Section 16.3 [Socket Addresses],
page 397.



Chapter 2: Error Reporting 19

int

int

int

int

int

int

int

int

int

int

int

int

int

ENETDOWN [Macro]
A socket operation failed because the network was down.

ENETUNREACH [Macro]
A socket operation failed because the subnet containing the remote host was unreach-
able.

ENETRESET [Macro]
A network connection was reset because the remote host crashed.

ECONNABORTED [Macro]
A network connection was aborted locally.

ECONNRESET [Macro]
A network connection was closed for reasons outside the control of the local host,
such as by the remote machine rebooting or an unrecoverable protocol violation.

ENOBUFS [Macro]
The kernel’s buffers for I/O operations are all in use. In GNU, this error is always
synonymous with ENOMEM; you may get one or the other from network operations.

EISCONN [Macro]
You tried to connect a socket that is already connected. See Section 16.9.1 [Making
a Connection], page 419.

ENOTCONN [Macro]
The socket is not connected to anything. You get this error when you try to trans-
mit data over a socket, without first specifying a destination for the data. For a
connectionless socket (for datagram protocols, such as UDP), you get EDESTADDRREQ
instead.

EDESTADDRREQ [Macro]
No default destination address was set for the socket. You get this error when you try
to transmit data over a connectionless socket, without first specifying a destination
for the data with connect.

ESHUTDOWN [Macro]
The socket has already been shut down.

ETOOMANYREFS [Macro]
77

ETIMEDOUT [Macro]

A socket operation with a specified timeout received no response during the timeout
period.

ECONNREFUSED [Macro]
A remote host refused to allow the network connection (typically because it is not
running the requested service).



20

int

int

int

int

int

int

int

int

int

int

int

int

int

int

The GNU C Library

ELOOP [Macro]
Too many levels of symbolic links were encountered in looking up a file name. This
often indicates a cycle of symbolic links.

ENAMETOOLONG [Macro]
Filename too long (longer than PATH_MAX; see Section 31.6 [Limits on File System
Capacity], page 797) or host name too long (in gethostname or sethostname; see
Section 30.1 [Host Identification], page 769).

EHOSTDOWN [Macro]
The remote host for a requested network connection is down.

EHOSTUNREACH [Macro]
The remote host for a requested network connection is not reachable.

ENOTEMPTY [Macro]
Directory not empty, where an empty directory was expected. Typically, this error
occurs when you are trying to delete a directory.

EPROCLIM [Macro]
This means that the per-user limit on new process would be exceeded by an attempted
fork. See Section 22.2 [Limiting Resource Usage], page 585, for details on the RLIMIT_
NPROC limit.

EUSERS [Macro]
The file quota system is confused because there are too many users.

EDQUQOT [Macro]
The user’s disk quota was exceeded.

ESTALE [Macro]
Stale NFS file handle. This indicates an internal confusion in the NFS system which
is due to file system rearrangements on the server host. Repairing this condition
usually requires unmounting and remounting the NFS file system on the local host.

EREMOTE [Macro]
An attempt was made to NFS-mount a remote file system with a file name that already
specifies an NFS-mounted file. (This is an error on some operating systems, but we
expect it to work properly on the GNU system, making this error code impossible.)

EBADRPC [Macro]
777

ERPCMISMATCH [Macro]
777

EPROGUNAVATL [Macro]
777

EPROGMISMATCH [Macro]

777



Chapter 2: Error Reporting 21

int

int

int

int

int

int

int

int

int

EPROCUNAVAIL [Macro]
777
ENOLCK [Macro]

No locks available. This is used by the file locking facilities; see Section 13.15 [File
Locks], page 341. This error is never generated by the GNU system, but it can result
from an operation to an NFS server running another operating system.

EFTYPE [Macro]
Inappropriate file type or format. The file was the wrong type for the operation, or
a data file had the wrong format.

On some systems chmod returns this error if you try to set the sticky bit on a non-
directory file; see Section 14.9.7 [Assigning File Permissions|, page 376.

EAUTH [Macro]
777

ENEEDAUTH [Macro]
777

ENOSYS [Macro]

Function not implemented. This indicates that the function called is not implemented
at all, either in the C library itself or in the operating system. When you get this
error, you can be sure that this particular function will always fail with ENOSYS unless
you install a new version of the C library or the operating system.

ENQTSUP [Macro]
Not supported. A function returns this error when certain parameter values are valid,
but the functionality they request is not available. This can mean that the function
does not implement a particular command or option value or flag bit at all. For
functions that operate on some object given in a parameter, such as a file descriptor
or a port, it might instead mean that only that specific object (file descriptor, port,
etc.) is unable to support the other parameters given; different file descriptors might
support different ranges of parameter values.

If the entire function is not available at all in the implementation, it returns ENOSYS
instead.

EILSEQ [Macro]
While decoding a multibyte character the function came along an invalid or an in-
complete sequence of bytes or the given wide character is invalid.

EBACKGROUND [Macro]

In the GNU system, servers supporting the term protocol return this error for certain
operations when the caller is not in the foreground process group of the terminal.
Users do not usually see this error because functions such as read and write translate
it into a SIGTTIN or SIGTTOU signal. See Chapter 27 [Job Control], page 711, for
information on process groups and these signals.



22

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

The GNU C Library

EDIED [Macro]
In the GNU system, opening a file returns this error when the file is translated by a
program and the translator program dies while starting up, before it has connected
to the file.

ED [Macro]
The experienced user will know what is wrong.

EGREGIOUS [Macro]
You did what?

EIEIO [Macro]
Go home and have a glass of warm, dairy-fresh milk.

EGRATUITOUS [Macro]
This error code has no purpose.

EBADMSG [Macro]
EIDRM [Macro]
EMULTIHOP [Macro]
ENODATA [Macro]
ENOLINK [Macro]
ENOMSG [Macro]
ENOSR [Macro]
ENOSTR [Macro]
EOVERFLOW [Macro]
EPROTO [Macro]
ETIME [Macro]
ECANCELED [Macro]

Operation canceled; an asynchronous operation was canceled before it completed. See
Section 13.10 [Perform I/O Operations in Parallel], page 320. When you call aio_
cancel, the normal result is for the operations affected to complete with this error;
see Section 13.10.4 [Cancellation of ATO Operations], page 330.

The following error codes are defined by the Linuz/i386 kernel. They are not yet docu-
mented.



Chapter 2: Error Reporting

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int

ERESTART
ECHRNG
EL2NSYNC
EL3HLT
EL3RST
ELNRNG
EUNATCH
ENOCSI
EL2HLT
EBADE
EBADR
EXFULL
ENOANO
EBADRQC
EBADSLT
EDEADLOCK
EBFONT
ENONET
ENOPKG
EADV
ESRMNT
ECOMM
EDOTDOT
ENOTUNIQ
EBADFD
EREMCHG
ELIBACC
ELIBBAD
ELIBSCN
ELIBMAX
ELIBEXEC
ESTRPIPE
EUCLEAN

23



24

int
int
int
int
int
int
int
int
int
int
int
int
2.3
The 1

The GNU C Library

ENOTNAM [Macro]
ENAVAIL [Macro]
EISNAM [Macro]
EREMOTEIO [Macro]
ENOMEDIUM [Macro]
EMEDIUMTYPE [Macro]
ENOKEY [Macro]
EKEYEXPIRED [Macro]
EKEYREVOKED [Macro]
EKEYREJECTED [Macro]
EOWNERDEAD [Macro]
ENOTRECOVERABLE [Macro]

Error Messages

ibrary has functions and variables designed to make it easy for your program to report

informative error messages in the customary format about the failure of a library call. The
functions strerror and perror give you the standard error message for a given error code;
the variable program_invocation_short_name gives you convenient access to the name of

the p

char

char

rogram that encountered the error.

* strerror (int errnum) [Function]
The strerror function maps the error code (see Section 2.1 [Checking for Errors|,
page 13) specified by the errnum argument to a descriptive error message string. The
return value is a pointer to this string.

The value errnum normally comes from the variable errno.

You should not modify the string returned by strerror. Also, if you make subsequent
calls to strerror, the string might be overwritten. (But it’s guaranteed that no
library function ever calls strerror behind your back.)

The function strerror is declared in ‘string.h’.

* strerror_r (int errnum, char *buf, size_t n) [Function]
The strerror_r function works like strerror but instead of returning the error
message in a statically allocated buffer shared by all threads in the process, it returns
a private copy for the thread. This might be either some permanent global data or a
message string in the user supplied buffer starting at buf with the length of n bytes.

At most n characters are written (including the NUL byte) so it is up to the user to
select the buffer large enough.

This function should always be used in multi-threaded programs since there is no way
to guarantee the string returned by strerror really belongs to the last call of the
current thread.

This function strerror_r is a GNU extension and it is declared in ‘string.h’.



Chapter 2: Error Reporting 25

void perror (const char *message) [Function]
This function prints an error message to the stream stderr; see Section 12.2 [Standard
Streams|, page 229. The orientation of stderr is not changed.

If you call perror with a message that is either a null pointer or an empty string,
perror just prints the error message corresponding to errno, adding a trailing new-
line.

If you supply a non-null message argument, then perror prefixes its output with this
string. It adds a colon and a space character to separate the message from the error
string corresponding to errno.

The function perror is declared in ‘stdio.h’.

strerror and perror produce the exact same message for any given error code; the
precise text varies from system to system. On the GNU system, the messages are fairly
short; there are no multi-line messages or embedded newlines. Each error message begins
with a capital letter and does not include any terminating punctuation.

Compatibility Note: The strerror function was introduced in ISO C89. Many older C
systems do not support this function yet.

Many programs that don’t read input from the terminal are designed to exit if any
system call fails. By convention, the error message from such a program should start with
the program’s name, sans directories. You can find that name in the variable program_
invocation_short_name; the full file name is stored the variable program_invocation_
name.

char * program_invocation_name [Variable]
This variable’s value is the name that was used to invoke the program running in
the current process. It is the same as argv[0]. Note that this is not necessarily a
useful file name; often it contains no directory names. See Section 25.1 [Program
Arguments|, page 657.

char * program_invocation_short_name [Variable]
This variable’s value is the name that was used to invoke the program running in
the current process, with directory names removed. (That is to say, it is the same as
program_invocation_name minus everything up to the last slash, if any.)

The library initialization code sets up both of these variables before calling main.

Portability Note: These two variables are GNU extensions. If you want your program to
work with non-GNU libraries, you must save the value of argv[0] in main, and then strip
off the directory names yourself. We added these extensions to make it possible to write
self-contained error-reporting subroutines that require no explicit cooperation from main.

Here is an example showing how to handle failure to open a file correctly. The function
open_sesame tries to open the named file for reading and returns a stream if successful. The
fopen library function returns a null pointer if it couldn’t open the file for some reason. In
that situation, open_sesame constructs an appropriate error message using the strerror
function, and terminates the program. If we were going to make some other library calls
before passing the error code to strerror, we’'d have to save it in a local variable instead,
because those other library functions might overwrite errno in the meantime.



26 The GNU C Library

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

FILE =*
open_sesame (char *name)

{
FILE *stream;

errno = 0;
stream = fopen (name, "r");
if (stream == NULL)
{
fprintf (stderr, "%s: Couldn’t open file ¥%s; %s\n",
program_invocation_short_name, name, strerror (errno));
exit (EXIT_FAILURE);
}
else
return stream;

}

Using perror has the advantage that the function is portable and available on all systems
implementing ISO C. But often the text perror generates is not what is wanted and there
is no way to extend or change what perror does. The GNU coding standard, for instance,
requires error messages to be preceded by the program name and programs which read
some input files should should provide information about the input file name and the line
number in case an error is encountered while reading the file. For these occasions there are
two functions available which are widely used throughout the GNU project. These functions
are declared in ‘error.h’.

void error (int status, int errnum, const char *format, ...) [Function]
The error function can be used to report general problems during program execution.
The format argument is a format string just like those given to the printf family of
functions. The arguments required for the format can follow the format parameter.
Just like perror, error also can report an error code in textual form. But unlike
perror the error value is explicitly passed to the function in the errnum parameter.
This elimintates the problem mentioned above that the error reporting function must
be called immediately after the function causing the error since otherwise errno might
have a different value.

The error prints first the program name. If the application defined a global variable
error_print_progname and points it to a function this function will be called to print
the program name. Otherwise the string from the global variable program_name is
used. The program name is followed by a colon and a space which in turn is followed
by the output produced by the format string. If the errnum parameter is non-zero the
format string output is followed by a colon and a space, followed by the error message
for the error code errnum. In any case is the output terminated with a newline.

The output is directed to the stderr stream. If the stderr wasn’t oriented before
the call it will be narrow-oriented afterwards.

The function will return unless the status parameter has a non-zero value. In this case
the function will call exit with the status value for its parameter and therefore never



Chapter 2: Error Reporting 27

return. If error returns the global variable error_message_count is incremented by
one to keep track of the number of errors reported.

void error_at_line (int status, int errnum, const char *fname, [Function]
unsigned int 1ineno, const char *format, .. .)
The error_at_line function is very similar to the error function. The only dif-
ference are the additional parameters fname and lineno. The handling of the other
parameters is identical to that of error except that between the program name and
the string generated by the format string additional text is inserted.

Directly following the program name a colon, followed by the file name pointer to by
fname, another colon, and a value of lineno is printed.

This additional output of course is meant to be used to locate an error in an input
file (like a programming language source code file etc).

If the global variable error_one_per_line is set to a non-zero value error_at_line
will avoid printing consecutive messages for the same file anem line. Repetition which
are not directly following each other are not caught.

Just like error this function only returned if status is zero. Otherwise exit is called
with the non-zero value. If error returns the global variable error_message_count
is incremented by one to keep track of the number of errors reported.

As mentioned above the error and error_at_line functions can be customized by
defining a variable named error_print_progname.

void (* error_print_progname) (void) [Variable]
If the error_print_progname variable is defined to a non-zero value the function
pointed to is called by error or error_at_line. It is expected to print the program
name or do something similarly useful.

The function is expected to be print to the stderr stream and must be able to handle
whatever orientation the stream has.

The variable is global and shared by all threads.

unsigned int error_message_count [Variable]
The error_message_count variable is incremented whenever one of the functions
error or error_at_line returns. The variable is global and shared by all threads.

int error_one_per_line [Variable]
The error_one_per_line variable influences only error_at_line. Normally the
error_at_line function creates output for every invocation. If error_one_per_
line is set to a non-zero value error_at_line keeps track of the last file name and
line number for which an error was reported and avoid directly following messages for
the same file and line. This variable is global and shared by all threads.

A program which read some input file and reports errors in it could look like this:
{
char *line = NULL;
size_t len = 0;
unsigned int lineno = 0;



28 The GNU C Library

error_message_count = 0;
while (! feof_unlocked (fp))

{
ssize_t n = getline (&line, &len, fp);
if (n <= 0)
/* End of file or error. */
break;
++lineno;

/* Process the line. */

if (Detect error in line)
error_at_line (0, errval, filename, lineno,
"some error text %s", some_variable);

}

if (error_message_count != 0)
error (EXIT_FAILURE, O, "/u errors found", error_message_count);
}

error and error_at_line are clearly the functions of choice and enable the programmer
to write applications which follow the GNU coding standard. The GNU libc additionally
contains functions which are used in BSD for the same purpose. These functions are declared
in ‘err.h’. It is generally advised to not use these functions. They are included only for
compatibility.

void warn (const char *format, ...) [Function]
The warn function is roughly equivalent to a call like

error (0, errno, format, the parameters)

except that the global variables error respects and modifies are not used.

void vwarn (const char *format, va_list) [Function]
The vwarn function is just like warn except that the parameters for the handling of
the format string format are passed in as an value of type va_list.

void warnx (const char *format, ...) [Function]
The warnx function is roughly equivalent to a call like

error (0, 0, format, the parameters)

except that the global variables error respects and modifies are not used. The dif-
ference to warn is that no error number string is printed.

void vwarnx (const char *format, va_list) [Function]
The vwarnx function is just like warnx except that the parameters for the handling
of the format string format are passed in as an value of type va_list.

void err (int status, const char *format, ...) [Function]
The err function is roughly equivalent to a call like

error (status, errno, format, the parameters)

except that the global variables error respects and modifies are not used and that
the program is exited even if status is zero.



Chapter 2: Error Reporting 29

void verr (int status, const char *format, va_list) [Function]
The verr function is just like err except that the parameters for the handling of the
format string format are passed in as an value of type va_list.

void errx (int status, const char *format, ...) [Function]
The errx function is roughly equivalent to a call like

error (status, 0, format, the parameters)

except that the global variables error respects and modifies are not used and that
the program is exited even if status is zero. The difference to err is that no error
number string is printed.

void verrx (int status, const char *format, va_list) [Function]
The verrx function is just like errx except that the parameters for the handling of
the format string format are passed in as an value of type va_list.



30

The GNU C Library



Chapter 3: Virtual Memory Allocation And Paging 31

3 Virtual Memory Allocation And Paging

This chapter describes how processes manage and use memory in a system that uses the
GNU C library.

The GNU C Library has several functions for dynamically allocating virtual memory in
various ways. They vary in generality and in efficiency. The library also provides functions
for controlling paging and allocation of real memory.

Memory mapped I/O is not discussed in this chapter. See Section 13.7 [Memory-mapped
1/0], page 312.

3.1 Process Memory Concepts

One of the most basic resources a process has available to it is memory. There are a lot of
different ways systems organize memory, but in a typical one, each process has one linear
virtual address space, with addresses running from zero to some huge maximum. It need
not be contiguous; i.e. not all of these addresses actually can be used to store data.

The virtual memory is divided into pages (4 kilobytes is typical). Backing each page
of virtual memory is a page of real memory (called a frame) or some secondary storage,
usually disk space. The disk space might be swap space or just some ordinary disk file.
Actually, a page of all zeroes sometimes has nothing at all backing it — there’s just a flag
saying it is all zeroes.

The same frame of real memory or backing store can back multiple virtual pages be-
longing to multiple processes. This is normally the case, for example, with virtual memory
occupied by GNU C library code. The same real memory frame containing the printf
function backs a virtual memory page in each of the existing processes that has a printf
call in its program.

In order for a program to access any part of a virtual page, the page must at that moment
be backed by (“connected t0”) a real frame. But because there is usually a lot more virtual
memory than real memory, the pages must move back and forth between real memory and
backing store regularly, coming into real memory when a process needs to access them and
then retreating to backing store when not needed anymore. This movement is called paging.

When a program attempts to access a page which is not at that moment backed by
real memory, this is known as a page fault. When a page fault occurs, the kernel suspends
the process, places the page into a real page frame (this is called “paging in” or “faulting
in”), then resumes the process so that from the process’ point of view, the page was in
real memory all along. In fact, to the process, all pages always seem to be in real memory.
Except for one thing: the elapsed execution time of an instruction that would normally be
a few nanoseconds is suddenly much, much, longer (because the kernel normally has to do
I/O to complete the page-in). For programs sensitive to that, the functions described in
Section 3.4 [Locking Pages], page 61 can control it.

Within each virtual address space, a process has to keep track of what is at which
addresses, and that process is called memory allocation. Allocation usually brings to mind
meting out scarce resources, but in the case of virtual memory, that’s not a major goal,
because there is generally much more of it than anyone needs. Memory allocation within a
process is mainly just a matter of making sure that the same byte of memory isn’t used to
store two different things.



32 The GNU C Library

Processes allocate memory in two major ways: by exec and programmatically. Actually,
forking is a third way, but it’s not very interesting. See Section 26.4 [Creating a Process],
page 700.

Exec is the operation of creating a virtual address space for a process, loading its basic
program into it, and executing the program. It is done by the “exec” family of functions
(e.g. execl). The operation takes a program file (an executable), it allocates space to
load all the data in the executable, loads it, and transfers control to it. That data is most
notably the instructions of the program (the text), but also literals and constants in the
program and even some variables: C variables with the static storage class (see Section 3.2.1
[Memory Allocation in C Programs], page 33).

Once that program begins to execute, it uses programmatic allocation to gain additional
memory. In a C program with the GNU C library, there are two kinds of programmatic
allocation: automatic and dynamic. See Section 3.2.1 [Memory Allocation in C Programs],
page 33.

Memory-mapped I/0 is another form of dynamic virtual memory allocation. Mapping
memory to a file means declaring that the contents of certain range of a process’ addresses
shall be identical to the contents of a specified regular file. The system makes the virtual
memory initially contain the contents of the file, and if you modify the memory, the system
writes the same modification to the file. Note that due to the magic of virtual memory and
page faults, there is no reason for the system to do I/O to read the file, or allocate real
memory for its contents, until the program accesses the virtual memory. See Section 13.7
[Memory-mapped 1/0], page 312.

Just as it programmatically allocates memory, the program can programmatically deal-
locate (free) it. You can’t free the memory that was allocated by exec. When the program
exits or execs, you might say that all its memory gets freed, but since in both cases the ad-
dress space ceases to exist, the point is really moot. See Section 25.6 [Program Termination],
page 695.

A process’ virtual address space is divided into segments. A segment is a contiguous
range of virtual addresses. Three important segments are:

The text segment contains a program’s instructions and literals and static constants.
It is allocated by exec and stays the same size for the life of the virtual address space.

e The data segment is working storage for the program. It can be preallocated and
preloaded by exec and the process can extend or shrink it by calling functions as
described in See Section 3.3 [Resizing the Data Segme