| v

ERLANG

ASN.1

Copyright © 1997-2010 Ericsson AB. All Rights Reserved.
ASN.11.6.14
June 15 2010

Copyright © 1997-2010 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

June 15 2010

Ericsson AB. All Rights Reserved.: ASN.1| 1

1.1 Asnl

1 User's Guide

The Asnl application contains modules with compile-time and run-time support for ASN.1.

1.1 Asnl

1.1.1 Introduction

Features
The Asnl application provides:

« AnASN.1 compiler for Erlang, which generates encode and decode functions to be used by Erlang programs
sending and receiving ASN.1 specified data.

* Run-time functions used by the generated code.

« Encoding rules supported are BER, the specialized BER version DER and the basic form of aligned and
unaligned variants of PER.

Overview

ASN.1 (Abstract Syntax Notation 1) defines the abstract syntax of information. The purpose of ASN.1 isto have a
platform independent language to express types using a standardized set of rules for the transformation of values of
a defined type, into a stream of bytes. This stream of bytes can then be sent on a communication channel set up by
the lower layersin the stack of communication protocols e.g. TCP/IP or encapsul ated within UDP packets. Thisway,
two different applications written in two completely different programming languages running on different computers
with different internal representation of data can exchange instances of structured data types (instead of exchanging
bytes or hits). This makes programming faster and easier since no code hasto be written to processthe transport format
of the data.

To write a network application which processes ASN.1 encoded messages, it is prudent and sometimes essential to
have a set of off-line development tools such as an ASN.1 compiler which can generate the encode and decode logic
for the specific ASN.1 data types. It is also necessary to combine this with some general language-specific runtime
support for ASN.1 encoding and decoding.

The ASN.1 compiler must be directed towards a target language or a set of closely related languages. This manual
describesacompiler which isdirected towardsthe functional language Erlang. In order to usethiscompiler, familiarity
with the language Erlang is essential. Therefore, the runtime support for ASN.1 isalso closely related to the language
Erlang and consist of anumber of functions, which the compiler uses. Thetypesin ASN.1 and how to represent values
of those typesin Erlang are described in this manual.

The following document is structured so that the first part describes how to use ASN.1 compiler, and then there are
descriptions of all the primitive and constructed ASN.1 types and their representation in Erlang,

Prerequisites

It is assumed that the reader is familiar with the ASN.1 notation as documented in the standard definition [] which is
the primary text. It may also be helpful, but not necessary, to read the standard definitions[] [] [1 [] [].

A very good book explaining those reference texts is [], free to download at http://www.oss.com/asnl/
dubuisson.html .

2 | Ericsson AB. All Rights Reserved.: ASN.1

href
href

1.1 Asnl

Knowledge of Erlang programming is also essential and reading the book Concurrent Programming in ERLANG, [],
isrecommended. Part 1 of thisis available on the web in PDF format.

Capability

Thisapplication coversall features of ASN.1 up to the 1997 edition of the specification. In the 2002 edition some new
extensions came up of which there are support only for some of them. ECN (Cncoding Control Notation) and XML
notation are still unsupported. Though, the other features of 2002 edition arefully or partly supported as shown below:

e Decima notation (e.g., "1.5e3") for REAL values. The NR1, NR2 and NR3 formats as explained in 1SO6093
are supported.

 TheRELATIVE-OID typefor relative object identifiers are fully supported.

e The subtype constraint (CONTAINING/ENCODED BY) to constrain the content of an octet string or a bit string
is parsed when compiling, but no further action istaken. This constraint is not a PER-visible constraint.

* The subtype constraint by regular expressions (PATTERN) for character string types is parsed when compiling,
but no further action is taken. This constraint is not a PER-visible constraint.

e Multiple-linecommentsasinC,/* ... */,aresupported.

It should also be added here that the encoding formats supported are BER, DER, PER aligned basic variant and PER
unaligned basic variant.

1.1.2 Getting Started with Asnl

A First Example
The following example demonstrates the basic functionality used to run the Erlang ASN.1 compiler.

First, create afile called Peopl e. asn containing the following:

Peopl e DEFINITIONS | MPLICI T TAGS :: =

BEG N
EXPORTS Per son;

Person ::= [PRI VATE 19] SEQUENCE {
nane PrintableString,
| ocation | NTEGER {hone(0),field(1l),roving(2)},
age | NTEGER OPTI ONAL }

END

This file (peopl e. asn) must be compiled before it can be used. The ASN.1 compiler checks that the syntax is
correct and that the text represents proper ASN.1 code before generating an abstract syntax tree. The code-generator
then uses the abstract syntax tree in order to generate code.

Thegenerated Erlang fileswill be placed inthe current directory or inthedirectory specifiedwiththe{ out di r, Di r }
option. The following shows how the compiler can be called from the Erlang shell:

1>asnlct: conpi |l e(" Peopl e", [ber _bin]).
Erl ang ASN. 1 conpiling "People.asn"
--{generated, "Peopl e. asnldb"}- -
--{generated, "People.hrl"}--
--{generated, "People.erl"}--

ok

2>

Ericsson AB. All Rights Reserved.: ASN.1| 3

href

1.1 Asnl

The ASN.1 module People is now accepted and the abstract syntax tree is saved in the Peopl e. asnldb file, the
generated Erlang code is compiled using the Erlang compiler and loaded into the Erlang runtime system. Now there
isauser interface of encode/2 and decode/2 in the module People, which isinvoked by:

' Peopl e' : encode(<Type nane>, <Val ue>),

or

' Peopl e' : decode(<Type nane>, <Val ue>),

Alternatively one can use the asnlrt: encode(<Modul e nane> ,<Type nane>, <Val ue>) and
asnlrt: decode(< Mdul e nane>, <Type nane>, <Val ue>) calls. However, they are not as efficient as
the previous methods since they result in an additional appl y/ 3 cal.

Assume thereisanetwork application which receivesinstances of the ASN. 1 defined type Person, modifies and sends
them back again:

receive
{Port,{data, Bytes}} ->
case ' Peopl e': decode(' Person', Bytes) of
{ok, P} ->
{ok, Answer} = 'Peopl e':encode(' Person', nk_answer (P)),
Port | {self(),{comand, Answer}};
{error, Reason} ->
exit({error, Reason})
end
end,

In the example above, a series of bytes is received from an external source and the bytes are then decoded
into a valid Erlang term. This was achieved with the call ' Peopl e' : decode(' Person', Byt es) which
returned an Erlang value of the ASN.1 type Per son. Then an answer was constructed and encoded using
' Peopl e' : encode(' Person', Answer) which takes an instance of adefined ASN.1 type and transformsit to
a (possibly) nested list of bytes according to the BER or PER encoding-rules.

The encoder and the decoder can aso be run from the shell. The following dialogue with the shell illustrates how the
functionsasnlrt: encode/ 3 andasnlrt: decode/ 3 are used.

2> Rockstar = {'Person', "Sonme Name", roving, 50}.
{' Person', "Sone Nane",roving, 50}
3> {ok, Bytes} = asnilrt:encode(' People', "' Person', Rockstar).
{ok, [<<243>>,

[17],

[19,9, "Some Nane"],

[2,1,[2]],

[2,1,"2"]1}
4> Bin = |list_to_binary(Bytes).
<<243, 17, 19, 9, 83, 111, 109, 101, 32, 78, 97, 109, 101, 2, 1, 2, 2, 1, 50>>
5> {ok, Person} = asnirt:decode(' People',"'Person', Bin).
{ok, {' Person', "Sone Nane",roving, 50}}
6>

Notice that the result from encode is a nested list which must be turned into a binary before the call to decode.
A binary is necessary as input to decode since the module was compiled with the ber _bi n option The reason for
returning anested list isthat it isfaster to produceand thel i st _t o_bi nar y operation is performed automatically
when the list is sent via the Erlang port mechanism.

Module dependencies
It is common that asn1 modules import defined types, values and other entities from another asn1 module.

4 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

Earlier versions of the asnl compiler required that modules that were imported from had to be compiled before the
module that imported. This caused problems when asnl modules had circular dependencies.

Now are referenced modules parsed when the compiler finds an entity that is imported. There will not be any code
generated for the referenced module. However, the compiled module rely on that the referenced modules also will
be compiled.

1.1.3 The Asnl Application User Interface
The Asnl application provides two separate user interfaces:

e« Themoduleasnlct which providesthe compile-time functions (including the compiler).

e The module asnlrt which provides the run-time functions. However, it is preferable to use the generated
encode/ 2 anddecode/ 2 functionsin each module, ie. Module:encode(Type,Value), in favor of theasnlrt
interface.

The reason for the division of the interface into compile-time and run-time isthat only run-time modules (asnlrt *)
need to be loaded in an embedded system.

Compile-time Functions

The ASN.1 compiler can be invoked directly from the command-line by means of the er | ¢ program. This is
convenient when compiling many ASN.1 files from the command-line or when using Makefiles. Here are some
examples of how the er | ¢ command can be used to invoke the ASN.1 compiler:

erl c Person. asn

erlc -bper_bin Person.asn

erlc -bber_bin +optimze ../Exanple.asn

erlc -o ../asnfiles -1 ../asnfiles -1 /usr/local/standards/asnl Person. asn

The useful options for the ASN.1 compiler are:
-b[ber | per | ber_bin | per_bin | uper_bin]

Choice of encoding rules, if omitted ber is the default. The ber _bi n and per _bi n options allows for
optimizations and are therefore recommended instaed of the ber and per options.

-0 QutDirectory
Where to put the generated files, default is the current directory.
-1 I'ncludeDir

Where to search for . asnldb files and asnl source specs in order to resolve references to other modules. This
option can be repeated many times if there are several places to search in. The compiler will always search the
current directory first.

+conpact _bit_string

Gives the user the option to use a compact format of the BIT STRING type to save memory space, typing space
and increase encode/decode performance, for details see BIT STRING type section.

+der
DER encoding rule. Only when using - ber or - ber _bi n option.
+optim ze

This flag has effect only when used together with one of per _bi n or ber _bi n flags. It gives time optimized
code in the generated modules and it uses another runtime module. In the per _bi n case a linked-in driver is
used. The result from an encode is abinary.

Ericsson AB. All Rights Reserved.: ASN.1 |5

1.1 Asnl

Whenthisflagisused you cannot usetheold format{ TypeNane, Val ue} whenyouencodevalues. Sinceitisan
unnecessary construct it has been removed in favor of performance. It isneither admitted to construct SEQUENCE
or SET component values with the format { Conponent Nane, Val ue} sinceit also is unnecessary. The only
case were it is necessary is in a CHOICE, were you have to pass values to the right component by specifying
{ Conponent Nane, Val ue} . See also about { Typename,Value} below and in the sections for each type.

+dri ver

Together with the flagsber _bi n and opt i mi ze you choose to use alinked in driver for considerable faster
decode.

+asnlconfig

Thisfunctionality workstogether withtheflagsber _bi nandopt i m ze. Y ou enablesthe specialized decodes,
see the Specialized Decode chapter.

+undec_r est

A buffer that holds a message, being decoded may also have some following bytes. Now it is possible to get
those following bytes returned together with the decoded value. If an asnl spec is compiled with this option a
tuple{ ok, Val ue, Rest } isreturned. Rest may bealist or abinary. Earlier versions of the compiler ignored
those following bytes.

{inline, Qut put Nane}

Compiling with this option gives one output module containing all asnl run-time functionality. The asnl
specs are provided in a target module Modul e. set . asn as described in the reference manual. The name
of the resulting module containing generated encode/decode functions and inlined run-time functions will be
Qut put Narre. er | . Themerging/inlining of codeisdoneby thei gor moduleof synt ax_t ool s. By default
thefunctionsgenerated from thefirst asnl specinthe. set . asn areexported, unlessa{ export,[aton()]}
or {export _all,true} option are provided. The list of atoms are names of choosen asnl specs from the
. set . asn file. See further examples of usage below

+ Any Erlc Option'

You may add any option to the Erlang compiler when compiling the generated Erlang files. Any option
unrecognised by the asn1 compiler will be passed to the Erlang compiler.

For a complete description of er | ¢ see Erts Reference Manual.
For preferred option use see Preferred Option Use section.

The compiler and other compile-time functions can also be invoked from the Erlang shell. Below follows a brief
description of the primary functions, for a complete description of each function see the Asnl Reference Manual, the
asnlct module.

The compiler isinvoked by usingasnlct : conpi | e/ 1 with default options, or asnilct : conpi | e/ 2 if explicit
options are given. Example:

asnlct: conpi | e(" H323- MESSACES. asnl").

which equals:

asnlct: conpi | e("H323- MESSAGES. asnl", [ber]).

If one wants PER encoding with optimizations:

6 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

asnlct: conpil e(" H323- MESSAGES. asnl", [per _bi n, opti m ze]).

The generic encode and decode functions can be invoked like this:

asnlct: encode(' H323- MESSAGES , ' SomeChoi ceType',{call,"octetstring"}).
asnlct: decode(' H323- MESSAGES , ' SomeChoi ceType' , Bytes).

Or, preferable like:

' H323- MESSAGES' : encode(' SoneChoi ceType', {cal |l ,"octetstring"}).
' H323- MESSAGES' : decode(' SoneChoi ceType', Byt es).

Preferred Option Use

It may not be obviouswhich compile options best fit asituation. Thissection describestheformat of theresult of encode
and decode. It also gives some performance statistics when using certain options. Finally there is a recommendation
which option combinations should be used.

The default option is ber . It is the same backend as ber _bi n except that the result of encode is transformed to a
flat list. Below is atable that gives the different formats of input and output of encode and decode using the allowed
combinations of coding and optimization options: (EAVF standsfor how ASN1 values arerepresented in Erlang which
is described in the ASN1 Types chapter)

Compile

Encoding Rule | options, allowed | encode input encode output decode input decode output
combinations

BER [ber] (default) EAVF flat list flatlist/ binary | EAVF

BER [ber_bin] EAVF iolist binary EAVF

BER [ber_bin, EAVF iolist binary EAVF
optimize]

BER [ber_bin, 1 eavE iolist iolist/ binary | EAVF
optimize, driver]

PERdigned |10 EAVF flat list flat list EAVF

variant

PERdigned |1 o i EAVF iolist/ binary | binary EAVF

variant

PER aigned [per__bm, EAVF binary binary EAVF

variant optimize]

PER unaligned [uper_bin] EAVF binary binary EAVF

variant

DER [(ber), der] EAVF flat list flat list/ binary |EAVF

Ericsson AB. All Rights Reserved.: ASN.1 |7

1.1 Asnl

DER [ber_bin, der] EAVF iolist binary EAVF

DER [er_bin, EAVF iolist binary EAVF
optimize, der]
[ber_bin,

DER optimize, driver, | EAVF iolist binary EAVF
der]

Table 1.1: The output /input formats for different combinations of compile options.

Encode / decode speed comparison in one user case for the above alternatives (except DER) is showed in the table
below. The DER alternatives are slower than their corresponding BER alternative.

compile options encode time decodetime
[ber] 120 162
[ber_bin] 124 154
[ber_bin, optimize] 50 78

[ber_bin, optimize, driver] 50 62

[per] 141 133
[per_bin] 125 123
[per_bin, optimize] 7 72
[uper_bin] 97 104

Table 1.2: One example of difference in speed for the compile option alternatives.

The sole compile options ber , ber _bi n and per are kept for backwards compatibility and should not be used in
new code.

You are strongly recommended to use the appropriate aternative of the bold typed options. The opt i m ze and
dri ver options does not affect the encode or decode result, just the time spent in run-time. When ber _bi n and
driver orper_bin, optimzeanddri ver iscombinedthe C-codedriver isused in choosen parts of encode/
decode procedure.

Compile options, allowed combinations use of linked-in driver
[ber] no

[ber_bin] no

[ber_bin, optimize] no

[ber_bin, optimize, driver] yes

8 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

[per] no
[per_bin] no
[per_bin, optimize] yes
[uper_bin] no
[(ber), der] no
[ber_hin, der] no
[ber_bin, optimize, der] no
[ber_bin, optimize, driver, der] yes

Table 1.3: When the ASNL1 linked-in driver is used.

Run-time Functions

A brief description of the major functions is given here. For a complete description of each function see the Asnl

Reference Manual, theasnlrt module.

The generic run-time encode and decode functions can be invoked as below:

asnlrt: encode(' H323- MESSAGES , ' SomeChoi ceType', {call,"octetstring"}).

asnlrt: decode(' H323- MESSAGES , ' SoneChoi ceType' , Bytes).

Or, preferable like:

' H323- MESSAGES' : encode(' SoneChoi ceType' ,{call,"octetstring"}).

' H323- MESSAGES' : decode(' SoneChoi ceType' , Byt es).

The asnl linked-in driver is enabled in two occasions. encoding of asnl values when the asnl spec is compiled
with per _bi n and opt i m ze or decode of encoded asnl values when the asnl spec is compiled with ber _bi n,
optim ze anddri ver . Inthose casesthedriver will beloaded automaticaly at thefirst call toencode/decode.
If one doesn't want the performance overhead of the driver being loaded at thefirst call it is possible to load the driver

separately by asnirt: | oad_driver ().

By invoking the function i nf o/ 0 in a generated module, one gets information about which compiler options were

used.

Errors

Errors detected at compile time appear on the screen together with a line number indicating where in the source file
the error was detected. If no errors are found, an Erlang ASN.1 module will be created as default.

The run-time encoders and decoders (in the asnlrt module) do execute within a catch and returns{ ok, Dat a}
or{error, {asnl, Description}} whereDescri pti on isanErlang term describing the error.

1.1.4 Multi File Compilation

There are various reasons for using a multi file compilation:

Ericsson AB. All Rights Reserved.: ASN.1|9

1.1 Asnl

e You want to choose name for the generated module by any reason. Maybe you need to compile the same specs
for different encoding/decoding standards.

e Youwant only one resulting module.

e Ifitiscrucia to haveaminimal system. Using{i nl i ne, Qut put Modul e} includesall necessary run-time
functions of the asnl application, but skips those modules not used.

* Upgrading issues. Even if you upgrade your Erlang system you may want to continue running the old asnl run-
time functionality.

* Performanceissues: If you have an asnl system with alot of cross references you may gain in performance.
Meassurements must be done for each case.

You may choose either the plain multi file compilation that just merges the choosen asnl specs or the
{inline, Qut put Modul e} that also includes the used asnl run-time functionality.

For both cases you need to specify which asnl specs you will compile in a module that must have the extension
. set. asn. You chose name of the module and provide the names of the asnl specs. For instance, if you have the
specsFi |l el. asn,Fil e2. asnandFi | e3. asn your module MyMbdul e. set . asn will look like:

Filel.asn
Fil e2.asn
Fil e3. asn

If you compile with:

~> erlc MyMddul e. set. asn

the result will be one merged module MyModul e. er | with the generated code from the three asnl specs. But if
you compile with:

~> erlc +"{inline,"' QutputMdule'}" M/Mdule.set.asn

the result will be amodule Qut put Modul e. er | that contains all encode/decode functions for the three asnl specs
and all used functionsfrom the asnl run-timemodules, inthiscaseasnlrt ber bi n.Intheformer caseall encode/
decode functions are exported but in the latter only the encode/decode functions of the first spec in the . set . asn,
i.e. thosefromFi | el. asn.

1.1.5 The ASN.1 Types

This section describes the ASN.1 types including their functionality, purpose and how values are assigned in Erlang.
ASN.1 has both primitive and constructed types:

Primitive types Constructed types
BOOLEAN SEQUENCE
INTEGER SET

REAL CHOICE

10 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

NULL SET OF and SEQUENCE OF
ENUMERATED ANY

BIT STRING ANY DEFINED BY

OCTET STRING EXTERNAL

Character Srings EMBEDDED PDV

OBJECT IDENTIFIER CHARACTER STRING
Object Descriptor

The TIME types

Table 1.4: The supported ASN.1 types

Note:

Values of each ASN.1 type has its own representation in Erlang described in the following subsections. Users
shall provide these values for encoding according to the representation, asin the example below.

Operational ::= BOOLEAN --ASN. 1 definition

In Erlang code it may look like:

Val = true,
{ ok, Byt es}=asnlrt: encode(M/Modul e, ' Operational ', Val),

For historical reasonsit is also possible to assign ASN.1 valuesin Erlang using a tuple notation with type and value
asthis

Val = {' Operational"', true}

Warning:

The tuple notation, { Typenanme, Val ue} is only kept because of backward compatibility and may be
withdrawn in afuturerelease. If the notation is used the Typenarmne element must be spelled correctly, otherwise
arun-time error will occur.

If the ASN.1 module is compiled with the flagsper _bi n orber bi nandopti m ze itisnot alowed to use
the tuple notation. That possibility has been removed due to performance reasons. Neither isit allowed to use the
{ Conponent Nane, Val ue} notationin case of a SEQUENCE or SET type.

Ericsson AB. All Rights Reserved.: ASN.1| 11

1.1 Asnl

Below follows a description of how values of each type can be represented in Erlang.

BOOLEAN

Booleans in ASN.1 express values that can be either TRUE or FALSE. The meanings assigned to TRUE or FALSE
is beyond the scope of this text.
In ASN.1itis possible to have:

Qperational ::= BOOLEAN

Assigning a value to the type Operational in Erlang is possible by using the following Erlang code:

Myvarl = true,

Thus, in Erlang the atomst r ue and f al se are used to encode a boolean value.

INTEGER

ASN.1 itself specifies indefinitely large integers, and the Erlang systems with versions 4.3 and higher, support very
large integers, in practice indefinitely large integers.

The concept of sub-typing can be applied to integers aswell asto other ASN.1 types. The details of sub-typing are not
explained here, for further info see[]. A variety of syntaxes are allowed when defining a type as an integer:

T1 ::= | NTEGER

T2 ::= | NTEGER (-2..7)

T3 ::= | NTEGER (0..MAX)

T4 ::= | NTEGER (0<..MAX)

T5 ::= | NTEGER (M N<. . -99)

T6 ::= I NTEGER {red(0), blue(l),white(2)}

The Erlang representation of an ASN.1 INTEGER is an integer or an atom if aso called \011Naned Nunber Li st
(see T6 above) is specified.

Below is an example of Erlang code which assigns values for the above types.

Tlval ue = 0,

T2val ue = 6,
T6val uel = bl ue,
T6val ue2 = 0,
T6val ue3 = white

The Erlang variables above are now bound to valid instances of ASN.1 defined types. This style of value can be passed
directly to the encoder for transformation into a series of bytes.

The decoder will return an atom if the value corresponds to a symbol in the Named NumberL.ist.

REAL
In thisversion reals are not implemented. When they are, the following ASN.1 typeis used:

12 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

R1 ::= REAL

Can be assigned avalue in Erlang as:

Rlval uel
Rlval ue2

2. 14,
{256, 10, - 2},

In the last line note that the tuple {256,10,-2} isthe real number 2.56 in a special notation, which will encode faster
than simply stating the number as 2.56. The arity three tupleis { Mant i ssa, Base, Exponent } i.e. Mantissa*
BaseExponent.

NULL

Null is suitable in cases where supply and recognition of avalue isimportant but the actual valueis not.

Not ype ::= NULL

The NULL type can be assigned in Erlang:

N1 = ' NULL',

The actual valueisthe quoted atom 'NULL".

ENUMERATED
The enumerated type can be used, when the value we wish to describe, may only take one of aset of predefined values.

DaysCOf TheWeek :: = ENUVERATED { sunday(1), nonday(2),tuesday(3),
\ 011wednesday(4), t hursday(5), fri day(6), saturday(7) }

For exampleto assign aweekday valuein Erlang use the same atom asin the Enurrer at i ons of the type definition:

Dayl = saturday,

The enumerated type is very similar to an integer type, when defined with a set of predefined values. An enumerated
typediffersfrom an integer in that it may only have specified values, whereas an integer can also have any other value.

BIT STRING

The BIT STRING type can be used to model information which is made up of arbitrary length series of hits. It is
intended to be used for a selection of flags, not for binary files.
In ASN.1 BIT STRING definitions may look like:

Ericsson AB. All Rights Reserved.: ASN.1| 13

1.1 Asnl

Bitsl ::
Bits2 ::

BI T STRI NG
BI T STRI NG {foo(0), bar (1), gnu(2), gnonme(3), punk(14)}

There are four different notations available for representation of BIT STRING values in Erlang and as input to the
encode functions.

e Alist of binary digits (0 or 1).

» A hexadecima number (or an integer). Thisformat should be avoided, since it is easy to misinterpret aBl T
STRI NGvauein thisformat. Thisformat may be withdrawn in afuture rel ease.

* Alist of atoms corresponding to atomsin the NanedBi t Li st inthe BIT STRING definition.

e As{Unused, Bi nary} where Unused denotes how many trailing zero-bits 0 to 7 that are unused in the least
significant bytein Bi nary. Thisnotation is only available when the ASN.1 files have been compiled with the
+compact_bit_string flag in the option list. In this case it is possible to use all kinds of notation when encoding.
But the result when decoding is aways in the compact form. The benefit from this notation is a more compact
notation when one has large BIT STRINGs. The encode/decode performance is also much better in the case of
large BIT STRINGs.

Note:
Note that it is advised not to use the integer format of aBIT STRING, see the second point above.

Bitsivall = [0,1,0,1, 1],
BitslVal 2 = 16#1A,
Bitslval 3 = {3,<<0:1,1:1,0:1,1:1,1: 1, 0: 3>>}

Notethat Bi t s1Val 1, Bi t s1Val 2 and Bi t s1Val 3 denote the same value.

Bits2Val 1 = [gnu, punk],

Bi ts2Val 2 = 2#1110,

Bi t s2Val 3 = [bar, gnu, gnone],
Bits2val4 = [0,1,1,1]

TheaboveBi t s2Val 2,Bi t s2Val 3 and Bi t s2Val 4 also al denote the same value.

Bi t s2Val 1 isassigned symboalic values. The assignment means that the bits corresponding to gnu and punk i.e.
bits 2 and 14 are set to 1 and the rest set to 0. The symbolic values appear asalist of values. If anamed value appears,
which is not specified in the type definition, a run-time error will occur.

The compact notation equivalent to the empty BIT STRING is{ 0, <<>>} , which in the other notationsis[] or 0.
BIT STRINGS may also be sub-typed with for example a SIZE specification:

Bits3 ::= BIT STRING (Sl ZE(0..31))

This means that no bit higher than 31 can ever be set.

14 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

OCTET STRING

The OCTET STRING isthesimplest of all ASN.1typesThe OCTET STRING only movesor transferse.g. binary files
or other unstructured information complying to two rules. Firstly, the bytes consist of octets and secondly, encoding
isnot required.

It is possible to have the following ASN.1 type definitions:

OCTET STRI NG

oL
Q2 ::= OCTET STRING (S| ZE(28))

With the following example assignments in Erlang:

OLVal
Q2Val

[17, 13, 19, 20, 0, 0, 255, 254],
"must be exactly 28 chars....",

Observe that OlVal isassigned a series of numbers between 0 and 255 i.e. octets. O2Val isassigned using the string
notation.

Character Strings

ASN.1 supports awide variety of character sets. The main difference between OCTET STRINGS and the Character
strings isthat OCTET STRINGS have no imposed semantics on the bytes delivered.

However, when using for instance the IA5String (which closely resembles ASCII) the byte 65 (in decimal notation)
means the character 'A’.

For example, if a defined type is to be a VideotexString and an octet is received with the unsigned integer value X,
then the octet should be interpreted as specified in the standard I TU-T T.100,T.101.

The ASN.1to Erlang compiler will not determinethe correct interpretation of each BER (Basic Encoding Rules) string
octet value with different Character strings. Interpretation of octets is the responsibility of the application. Therefore,
from the BER string point of view, octets appear to be very similar to character strings and are compiled in the same
way.

It should be noted that when PER (Packed Encoding Rules) is used, there is a significant difference in the encoding
scheme between OCTET STRINGS and other strings. The constraints specified for a type are especially important
for PER, where they affect the encoding.

Please note that all the Character strings are supported and it is possible to use the following ASN.1 type definitions:

Digs ::= NunmericString (SIZE(1..3))
TextFile ::= | A5String (SIZE(O..64000))

and the following Erlang assignments:

Di gsVal 1 = "456",

Di gsval 2 = "123",

TextFilevall = "abc...xyz...",

TextFileVal 2 = [88,76,55,44,99,121 a lot of characters here]

The Erlang representation for "BMPString” and "Universal String” iseither alist of ASCII valuesor alist of quadruples.
The quadruple representation associates to the Unicode standard representation of characters. The ASCII characters

Ericsson AB. All Rights Reserved.: ASN.1| 15

1.1 Asnl

are al represented by quadruples beginning with three zeros like {0,0,0,65} for the ‘A’ character. When decoding a
valuefor these stringstheresult isalist of quadruples, or integers when the valueisan ASCI| character. Thefollowing
example shows how it works:

InafilePrinBtri ngs. asnl thetype BMP is defined as
BMP :: = BMPStri ng thenusing BER encoding (ber _bi n option)the input/output format will be:

1> {ok, Bytesl} = asnilrt:encode('Printtrings','BwW' ,b[{0,0,53,53},{0,0,45,56}]).
{ok, [30, 4, "55-8"]}

2> asnlrt:decode(' PrinStrings',' BV ,list_to_binary(Bytesl)).

{ok,[{0,0, 53,53}, {0, 0, 45,56}]}

3> {ok, Bytes2} = asnlrt:encode('PrinfStrings','BwW',[{0,0,53,53},{0,0,0,65}]).
{ok, [30, 4,[53,53,0,65]]}

4> asnlrt:decode(' PrinStrings',' B ,list_to_binary(Bytes2)).

{ok, [{O0, 0, 53,53}, 65] }

5> {ok, Bytes3} = asnilrt:encode(' PrinfStrings','BW',"BWP string").

{ok, [30,20,]0, 66,0, 77,0, 80,0, 32,0, 115, 0, 116, 0, 114, 0, 105, 0, 110, 0, 103]]}

6> asnlrt:decode(' Prinftrings',' BW ,list_to_binary(Bytes3)).

{ok, "BMP string"}

The UTF8String is represented in Erlang as a list of integers, where each integer represents the unicode value of
one character. When a value shall be encoded one first has to transform it to a UTF8 encoded binary, then it can be
encoded by asnl. When decoding the result isaUTF8 encoded binary, which may betransformed to aninteger list. The
transformation functions, ut f 8_binary _to list andutf8_ |ist_to_binary,areintheasnlrt module.
In the example below we assume an asnl definition UTF : : = UTF8St ri ng inamodule UTF. asn:

1> asnlct:conpile(' UTF ,[ber_bin]).

Erlang ASN. 1 version "1.4.3.3" conpiling "UTF. asn"
Conpi | er Options: [ber_bin]

--{generated, "UTF. asnldb"}- -

--{generated, "UTF. er|"}--

ok
2> UTF8Val 1 = "hel | 0".
“hel | 0"

3> {ok, UTF8bi n1} = asnilrt:utf8_|ist_to_bi nary(UTF8Val 1).
{ok, <<104, 101, 108, 108, 111>>}
4> {ok, B} =" UTF' : encode(' UTF' , UTF8bi n1) .

{ok, [12,

5,

<<104, 101, 108, 108, 111>>] }
5> Bin = list_to_binary(B).

<<12, 5, 104, 101, 108, 108, 111>>

6> { ok, UTF8bi n1} =" UTF' : decode(' UTF' , Bi n).

{ok, <<104, 101, 108, 108, 111>>}

7> asnlrt:utf8_binary_to_|ist(UTF8binl).

{ok, "hel | 0"}

8> UTF8Val 2 = [16#00, 16#100, 16#f fff, 16#f fffff].

[0, 256, 65535, 16777215]

9> {ok, UTF8bi n2} = asnilrt:utf8_|ist_to_bi nary(UTF8Val 2).
{ok, <<0, 196, 128, 239, 191, 191, 248, 191, 191, 191, 191>>}

10> {ok, B2} = 'UTF' : encode(' UTF' , UTF8bi n2).

{ok, [12,

11,

<<0, 196, 128, 239, 191, 191, 248, 191, 191, 191, 191>>] }
11> Bin2 = |ist_to_binary(B2).

<<12, 11, 0, 196, 128, 239, 191, 191, 248, 191, 191, 191, 191>>
12> {ok, UTF8bi n2} = ' UTF' : decode(' UTF', Bi n2).

{ok, <<0, 196, 128, 239, 191, 191, 248, 191, 191, 191, 191>>}
13> asnlrt:utf8_binary_to_|ist(UTF8bin2).

16 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

{ok, [0, 256, 65535, 16777215] }
14>

OBJECT IDENTIFIER

The OBJECT IDENTIFIER is used whenever a unique identity is required. An ASN.1 module, atransfer syntax, etc.
isidentified with an OBJECT IDENTIFIER. Assume the example below:

G d ::= OBJECT | DENTI FI ER

Therefore, the example below is avalid Erlang instance of the type 'Oid'.

Odval1l = {1,255},

The OBJECT IDENTIFIER value is simply atuple with the consecutive values which must be integers.

The first value is limited to the values O, 1 or 2 and the second value must be in the range 0..39 when the first value
isOor1.

The OBJECT IDENTIFIER isavery important typeand it iswidely used within different standardsto uniquely identify
various objects. In[], there is an easy-to-understand description of the usage of OBJECT IDENTIFIER.

Object Descriptor

Values of thistype can be assighed avalue as an ordinary stringi.e.
"Thisisthe value of an Object descriptor"

The TIME Types

Two different time types are defined within ASN.1, Generalized Time and UTC (Universal Time Coordinated), both
are assigned avalue as an ordinary string within double quotesi.e. "19820102070533.8".

In case of DER encoding the compiler does not check the validity of the time values. The DER requirements upon
those strings is regarded as a matter for the application to fulfill.

SEQUENCE

The structured types of ASN.1 are constructed from other typesin amanner similar to the concepts of array and struct
inC.
A SEQUENCE in ASN.1 is comparable with astruct in C and arecord in Erlang. A SEQUENCE may be defined as:

Pdu ::= SEQUENCE ({
a | NTEGER,
b REAL,
¢ OBJECT | DENTI FI ER,
d NULL }

This is a 4-component structure called 'Pdu’. The major format for representation of SEQUENCE in Erlang is the
record format. For each SEQUENCE and SET in an ASN.1 module an Erlang record declaration is generated. For
Pdu above, arecord like thisis defined:

Ericsson AB. All Rights Reserved.: ASN.1| 17

1.1 Asnl

-record(' Pdu',{a, b, c, d}).

The record declarations for amodule Mare placed in aseparate M hr | file.
Values can be assigned in Erlang as shown below:

M/Pdu = # Pdu' {a=22, b=77. 99, ¢={0, 1, 2, 3, 4}, d=' NULL' }.

It is also possible to specify the vaue for each component in a SEQUENCE or a SET as
{ Conponent Nane, Val ue} . It isnot recommended and is not supported if the flagsper _bi n or ber _bi n and
opt i m ze were used when the module was compiled.

The decode functions will return arecord as result when decoding a SEQUENCE or a SET.

A SEQUENCE and a SET may contain acomponent with a DEFAULT key word followed by the actual valuethat isthe
default value. In case of BER encoding it is optional to encode the valueif it equalsthe default value. If the application
uses the atom asnl_DEFAULT asvalue or if the value is a primitive value that equal s the default value the encoding
omitsthe bytes for this value, which is more efficient and it resultsin fever bytes to send to the receiving application.

For instance, if the following types existsin afile "File.asn":

Seql ::= SEQUENCE {
\01la | NTEGER DEFAULT 1,
\011b Seq2 DEFAULT {aa TRUE, bb 15}

}

Seq2 ::= SEQUENCE {
\0llaa BOOLEAN,
\ 011bb | NTEGER

}

Some values and the corresponding encoding in an Erlang termina is shown below:

1> asnlct:conpile('File').

Erlang ASN. 1 version "1.3.2" conpiling "File.asnl"

Conpi l er Options: []

--{generated, "Fil e.asnldb"}- -

--{generated, "File.hrl"}--

--{generated, "File.erl"}--

ok

2> "File':encode(' Seql', {' Seql', asnl_DEFAULT, asnl_DEFAULT}) .
{ok,["0",[0],[[1.[111}

3> lists:flatten(["0",[O],[[1,[11]).

[48, 0]

4> 'File':encode(' Seql',{' Seql',1,{' Seqg2',true, 15}}).

{ok,["0","\\b", [[],["\\241",[6],[[[128],[1],"\\377"],[[129],[1],[15]]]]]11}
5> lists:flatten(["0","\\b",[[],["\\241",[6],[[[128],[12],"\\377"],[[129],[12],[15]]11111).
[48,8, 161, 6, 128, 1, 255, 129, 1, 15]

6>

The result after command line 3, in the example above,shows that the encoder omits the encoding of default values
when they are specific by asnl DEFAULT. Line 5 shows that even primitive values that equals the default value are
detected and not encoded. But the constructed value of component b in Seq1 is not recognized as the default value.
Checking of default valuesin BER is not done in case of complex values, because it would be to expensive.

18 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

But, the DER encoding format has stronger requirements regarding default\O11values both for SET and SEQUENCE.
A more elaborate and time expensive check of default values will take place. The following is an example with the
same types and values as above but with der encoding format.

1> asnlct:conpile('File',[der]).

Erlang ASN. 1 version "1.3.2" conpiling "File.asnl"
Conpi | er Options: [der]

--{generated, "Fil e.asnldb"}- -

--{generated, "File.hrl"}--

--{generated, "File.erl"}--

ok

2> 'File':encode(' Seql', {' Seql', asnl_DEFAULT, asnl_ DEFAULT}) .
{ok,["0",[O],[[1,[111}

3> lists:flatten(["0",[0],[[].[11]).

[48, 0]

4> 'File':encode(' Seql',{' Seql',1,{' Seq2',true, 15}}).
{ok,["0",[O],[[1,[111}

5> lists:flatten(["0",[0],[[].[11]).

[48, 0]

6>

Line 5 showsthat even values of constructed typesis checked and if it equals the default value it will not be encoded.

SET

The SET type is an unusual construct and normally the SEQUENCE type is more appropriate to use. Set is aso
inefficient compared with SEQUENCE, as the components can be in any order. Hence, it must be possible to
distinguish every component in 'SET", both when encoding and decoding a value of a type defined to be a SET. The
tags of al components must be different from each other in order to be easily recognizable.

A SET may be defined as:

Pdu2 ::= SET {
a | NTEGER,
b BOOLEAN,
¢ ENUMERATED {on(0),of f(1)} }

A SET is represented as an Erlang record. For each SEQUENCE and SET in an ASN.1 module an Erlang record
declaration is generated. For Pdu2 above arecord is defined like this:

-record(' Pdu2',{a, b, c}).
The record declarations for amodule Mare placed in aseparate M hr | file.
Values can be assigned in Erlang as demonstrated below:

V = # Pdu2' {a=44, b=f al se, c=of f}.

The decode functions will return arecord as result when decoding a SET.

The difference between SET and SEQUENCE is that the order of the components (in the BER encoded format) is
undefined for SET and defined as the lexical order from the ASN.1 definition for SEQUENCE. The ASN.1 compiler

Ericsson AB. All Rights Reserved.: ASN.1| 19

1.1 Asnl

for Erlang will aways encode a SET inthelexical order. The decode routines can handle SET components encoded in
any order but will always return the result as arecord. Since all components of the SET must be distinguishabl e both
in the encoding phase as well as the decoding phase the following type is not allowed in a module with EXPLICIT
or IMPLICIT astag-default ;

Bad ::= SET {i |NTEGER
i | NTEGER }

The ASN.1to Erlang compiler rejectsthe abovetype. We shall not explain the concept of tag further here, werefer to([].

Encoding of a SET with components with DEFAULT values behaves similar as a SEQUENCE, see above. The DER
encoding format restrictions on DEFAULT values is the same for SET as for SEQUENCE, and is supported by the
compiler, see above.

Moreover, in DER the elements of a SET will be sorted. If acomponent is an untagged choice the sorting have to take
place in run-time. This fact emphasizes the following recommendation if DER encoding format is used.

The concept of SET is an unusual construct and one cannot think of one single application where the set type is
essential. (Imagine if someone "invented" the shuffled array in 'C') People tend to think that 'SET' sounds nicer and
more mathematical than 'SEQUENCE' and hence use it when 'SEQUENCE' would have been more appropriate. It is
also most inefficient, since every correct implementation of SET must always be prepared to accept the components
in any order. So, if possible use SEQUENCE instead of SET.

Notes about Extendability for SEQUENCE and SET

When a SEQUENCE or SET contains an extension marker and extension components like this:

SExt ::= SEQUENCE {
a | NTEGER,

b BOOLEAN }

It means that the type may get more components in newer versions of the ASN.1 spec. In this case it has got a new
component b. Thus, incoming messages that will be decoded may have more or fever components than this one.

The component b will be treated as an original component when encoding a message. In this case, as it is not an
optional element, it must be encoded.

During decoding the b field of the record will get the decoded value of the b component if present and otherwise the
valueasnl NOVALUE.

CHOICE

The CHOICE type is a space saver and is similar to the concept of a'union' in the C-language. As with the previous
SET-type, the tags of all components of a CHOICE need to be distinct. If AUTOMATIC TAGS are defined for the
module (which is preferable) the tags can be omitted completely in the ASN.1 specification of a CHOICE.

Assume:

T ::= CHA CE {
x [0] REAL,
y [1] | NTEGER
z [2] OBJECT | DENTI FI ER }

20 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

It isthen possible to assign values:

Tval 1 = {y, 17},
Tval 2 = {z,{0,1, 2}},

A CHOICE vdue is dways represented as the tuple {ChoiceAlternative, Val } where
Choi ceAl t er nat i ve isan atom denoting the selected choice alternative.

It isalso allowed to have a CHOICE type tagged as follow:

C ::= [PRI VATE 111] CHO CE {
C1,
C2 }

Cl ::= CHO CE {

a [0] | NTEGER,
b [1] BOOLEAN }

C2 ::= CHO CE {

c [2] I NTEGER,
d [3] OCTET STRING }

In this case, the top type C appears to have no tags at all in its components, however, both C1 and C2 are a so defined
as CHOICE types and they have distinct tags among themselves. Hence, the above type C is both legal and allowed.

When a CHOICE contains an extension marker and the decoder detects an unknown alternative of the CHIOCE the
valueisrepresented as:

\011 {asnl_ExtAlt, BytesForOpenType}

Where Byt esFor OpenType isalist of bytes constituting the encoding of the "unknown" CHOICE aternative.

SET OF and SEQUENCE OF

The SET OF and SEQUENCE OF types correspond to the concept of anarray found in several programming languages.
The Erlang syntax for both of these typesis straight forward. For example:

Arrl ::
Arr2 ::

SET SIZE (5) OF | NTEGER (4..9)
SEQUENCE OF OCTET STRI NG

We may have the following in Erlang:

Arr 1Val
Arr 2Val

[4,5,6,7,8],
["abc”,[14, 34, 54], "Cctets"],

Ericsson AB. All Rights Reserved.: ASN.1| 21

1.1 Asnl

Please note that the definition of the SET OF typeimpliesthat the order of the componentsisundefined, but in practice
there is no difference between SET OF and SEQUENCE OF. The ASN.1 compiler for Erlang does not randomize the
order of the SET OF components before encoding.

However, in case of a vaue of the type SET OF, the DER encoding format requires the elements to be sent in
ascending order of their encoding, which implies an expensive sorting procedure in run-time. Therefore it is strongly
recommended to use SEQUENCE OF instead of SET OF if itispossible.

ANY and ANY DEFINED BY

The types ANY and ANY DEFI NED BY have been removed from the standard since 1994. It is recommended not to
use these types any more. They may, however, exist in some old ASN.1 modules. Theideawith thistype wasto leave
a"hole" in a definition where one could put unspecified data of any kind, even non ASN.1 data.

A value of thistypeisencoded asan open type.

Instead of ANY/ANY DEFI NED BY oneshould usei nf ormati on object class,table constraints
and par amet eri zat i on. In particular the construct TYPE- | DENTI FI ER. @'ype accomplish the same as the
deprecated ANY.

See also Information object

EXTERNAL, EMBEDDED PDV and CHARACTER STRING
These types are used in presentation layer negotiation. They are encoded according to their associated type, see[].

The EXTERNAL type had adlightly different associated type before 1994. [] statesthat encoding shall follow the older
associate type. Therefore does generated encode/decode functions convert values of the newer format to the older
format before encoding. Thisimpliesthat it is allowed to use EXTERNAL type values of either format for encoding.
Decoded values are always returned on the newer format.

Embedded Named Types

The structured types previously described may very well have other named types as their components. The
general syntax to assign a value to the component C of a named ASN.1 type T in Erlang is the record syntax
T {' C =Val ue}.Where Val ue may be avalue of yet another type T2.

For example:
B ::= SEQUENCE {
a Arrl,
b [0] T}
Arrl ::= SET SIZE (5) OF I NTECGER (4..9)
T ::= CHO CE {
x [0] REAL,

y [1] I NTEGER,
z [2] OBJECT | DENTIFIER }

The above example can be assigned like thisin Erlang:

V2 = # B {a=[4,5,6,7,8], b={x,7.77}}.

22 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

1.1.6 Naming of Records in .hrl Files

When an asnl specification is compiled al defined types of type SET or SEQUENCE will result in a corresponding
record in the generated hrl file. Thisis because the values for SET/SEQUENCE as mentioned in sections above are
represented as records.

Though there are some special cases of this functionality that are presented below.

Embedded Structured Types

Itisalso possiblein ASN.1to have componentsthat are themsel ves structured types. For example, it ispossibleto have:

Enb ::= SEQUENCE ({
a SEQUENCE OF OCTET STRI NG
b SET {
a [0] | NTEGER,
b [1] | NTEGER DEFAULT 66},
¢ CHA CE {
a | NTECER,
b FooType } }

FooType ::= [3] VisibleString

The following records are generated because of the type Enb:

-record(' Emb, {a, b, c}).
-record(' Enb_b',{a, b = asnl _DEFAULT}). % the enbedded SET type

Values of the Enb type can be assigned like this:

V = # Enb' {a=["qqqq", [1, 2, 255]],
b = # Enb_b' {a=99},
¢ ={b,"Can you see this"}}.

For an embedded type of type SEQUENCE/SET inaSEQUENCE/SET therecord nameisextended with an underscore
and the component name. If the embedded structure is deeper with SEQUENCE, SET or CHOICE typesin the line,
each component-/alternative-name will be added to the recordname.

For example:

Seq ::= SEQUENCE{
a\ 011CHO CE{

\ 011b SEQUENCE {

\011 ¢ | NTEGER

\011 }

\ 011}

}

will result in the following record:

Ericsson AB. All Rights Reserved.: ASN.1 | 23

1.1 Asnl

-record(‘Seq_a_b',{c}).

If the structured type has a component with an embedded SEQUENCE OF/SET OF which embedded typeinturnisa
SEQUENCE/SET it will give arecord with the SEQOF/SETOF addition asin the following example:

Seq ::= SEQUENCE {
a SEQUENCE OF SEQUENCE {
\ 011 b

}
¢ SET OF SEQUENCE {

\011 d
}
}

Thisresults in the records:

-record(' Seq_a_SEQOF {b}).
-record(' Seq_c_SETOF {d}).

A parameterized type should be considered as an embedded type. Each time a such type is referenced an instance of
it is defined. Thus in the following example a record with name ' Seq_b' is generated in the .hrl file and used to

hold values.

Seq ::= SEQUENCE {
b PType{| NTEGER}
}

PType{T} ::= SEQUENCE{
idT
}

Recursive Types
Types may refer to themselves. Suppose:

Rec ::= CHO CE {
not hi ng [0] NULL,
sonet hi ng SEQUENCE {
a | NTECER,
b OCTET STRI NG
c Rec }}

Thistypeisrecursive; that is, it refersto itself. Thisisallowed in ASN.1 and the ASN.1-to-Erlang compiler supports
thisrecursive type. A value for thistypeis assigned in Erlang as shown below:

77,
"sonme octets here",
{not hing," NULL'}}}.

V = {sonet hi ng, # Rec_sonet hi ng' {a
b
€

24 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

1.1.7 ASN.1 Values

Values can be assigned to ASN.1 type within the ASN.1 code itself, as opposed to the actions taken in the previous
chapter where a value was assigned to an ASN.1 type in Erlang. The full value syntax of ASN.1 is supported and
[X.680] describes in detail how to assign valuesin ASN.1. Below is a short example:

TT ::= SEQUENCE {
a | NTEGER,
b SET OF OCTET STRI NG }

tt TT ::= {a 77,b {"kalle", "kula"}}

The value defined here could be used in several ways. Firstly, it could be used as the value in some DEFAULT
component:

SS ::= SET {
s [0] OBJECT | DENTI Fl ER,
val TT DEFAULT tt }

It could also be used from inside an Erlang program. If the above ASN.1 codewasdefined in ASN.1 module Val ues,
thenthe ASN.1valuet t canbereached from Erlang asafunctioncall to' Val ues' : tt () asintheexamplebelow.

1> Val = 'Values':tt().
{117 ,77,["kal | ", "kul a"]}
2> {ok, Bytes} = 'Values':encode('TT', Val).

{ok, ["0",
[18],
[[[2128],[2],"M],["\\242","\\r",[[[4],[5],"kalle"],[[4],[4],"kula"]]1]11}

3> FlatBytes = lists:flatten(Bytes).

[48, 18,128, 1, 77, 161, 13, 4, 5, 107, 97, 108, 108, 101, 4, 4, 107, 117, 108, 97]
4> ' Val ues' : decode(' TT', Fl at Byt es) .

{ok, {' TT',77,["kal | e", "kul a"]}}

5>

The above example shows that a function is generated by the compiler that returns a valid Erlang representation of
the value, even though the value is of a complex type.

Furthermore, there is a macro generated for each value in the .hrl file. So, the defined valuet t can aso be extracted
by ?t t in application code.

1.1.8 Macros

MACRO is not supported as the the type is no longer part of the ASN.1 standard.

1.1.9 ASN.1 Information Objects (X.681)

Information Object Classes, |nformation Objects and Information Object Sets, (in the following called classes, objects
and object setsrespectively), are defined in the standard definition []. In thefollowing only abrief explanationisgiven.

These constructs makes it possible to define open types, i.e. values of that type can be of any ASN.1 type. It isaso
possibleto define rel ationships between different types and values, since classes can hold types, val ues, objects, object
sets and other classesinitsfields. An Information Object Class may be defined in ASN.1 as:

Ericsson AB. All Rights Reserved.: ASN.1 | 25

1.1 Asnl

CGENERAL- PROCEDURE : : = CLASS {
&\Vessage,
&Repl y OPTI ONAL,
&Err or OPTI ONAL,
& d Printabl eString UNI QUE
}
W TH SYNTAX {
NEW MESSAGE &\Vessage
[REPLY &Repl y]
[ERROR &Error]
ADDRESS & d

An object is an instance of a class and an object set is a set containing objects of one specified class. A definition
may look like below.

The object obj ect 1 is an instance of the CLASS GENERAL-PROCEDURE and has one type field and one fixed
type value field. The object obj ect 2 also hasan OPTIONAL field ERROR, which isatypefield.

obj ect 1 GENERAL- PROCEDURE : : = {
NEW MESSAGE Printabl eString
ADDRESS "honge"

}

obj ect 2 GENERAL- PROCEDURE : : = {

NEW MESSAGE | NTEGER
ERROR | NTEGER
ADDRESS "r enot e"

The field ADDRESS is a UNIQUE field. Objects in an object set must have unique values in their UNIQUE field,
asin GENERAL-PROCEDURES:

GENERAL - PROCEDURES GENERAL- PROCEDURE : : = {
objectl | object?2}

One can not encode a class, object or object set, only referring to it when defining other ASN.1 entities. Typically one
refers to aclass and to object sets by table constraints and component relation constraints[] in ASN.1 types, asin:

Start Message ::= SEQUENCE {
msgld GENERAL- PROCEDURE. & d ({ GENERAL- PROCEDURES}) ,
cont ent GENERAL- PROCEDURE. &Vessage\ 011({ GENERAL- PROCEDURES} { @rsgl d}),

}

Inthetype St ar t Message the constraint followingthecont ent fieldtellsthatinavalueof type St ar t Message
thevalueinthecont ent field must come from the same object that is choosen by the ns gl d field.

So, the value #' St art Message' { nsgl d="home", content="Any Printable String"} islegd to
encode as a StartMessage value, whilethe value #' St art Message' { nsgl d="renot e", content ="Sone
String"} isillegal sincethe constraint in StartMessage tells that when you have choosen a value from a specific
object in the object set GENERAL-PROCEDURES in the msgld field you have to choose a value from that same
object in the content field too. In this second case it should have been any INTEGER value.

26 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

St art Message canin the cont ent field be encoded with a value of any type that an object in the GENERAL-
PROCEDURES object set has in its NEW MESSAGE field. This field refers to atype field &anp; Message in the
class. Thensgl d field is always encoded as a PrintableString, since the field refers to a fixed type in the class.

1.1.10 Parameterization (X.683)

Parameterization, which is defined in the standard [], can be used when defining types, values, value sets, information
object classes, information objects or information object sets. A part of a definition can be supplied as a parameter.
For instance, if a Type is used in a definition with certain purpose, one want the typename to express the intention.
This can be done with parameterization.

When many types (or an other ASN.1 entity) only differsin some minor cases, but the structure of thetypesare similar,
only one general type can be defined and the differences may be supplied through parameters.

One example of use of parameterization is:

General { Type} ::= SEQUENCE
{
nunber | NTEGER,
string Type
}
Tl ::= Ceneral {Printabl eString}

T2 ::

General {BI T STRI NG

An example of avalue that can be encoded astype T1is{12,"hello"}.

Observe that the compiler not generates encode/decode functions for parameterized types, only for the instances of
the parameterized types. So, if afile contains the types General{}, T1 and T2 above, encode/decode functions will
only be generated for T1 and T2.

1.1.11 Tags

Every built-in ASN.1 type, except CHOICE and ANY have a universal tag. This is a unique number that clearly
identifies the type.
Itisessential for all users of ASN.1 to understand all the details about tags.

Tags are implicitly encoded in the BER encoding as shown below, but are hardly not accounted for in the PER
encoding. In PER tags are used for instance to sort the components of a SET.

There are four different types of tags.
universal

For types whose meaning is the same in all applications. Such as integers, sequences and so on; that is, al the
built in types.

application

For application specific types for example, the typesin X.400 Message handling service have this sort of tag.
private

For your own private types.
context

Thisis used to distinguish otherwise indistinguishable types in a specific context. For example, if we have two
components of a CHOICE type that are both | NTEGER values, there is no way for the decoder to decipher

Ericsson AB. All Rights Reserved.: ASN.1 | 27

1.1 Asnl

which component was actually chosen, since both componentswill be tagged as| NTEGER. When thisor similar
situations occur, one or both of the components should be given a context specific to resolve the ambiguity.

Thetag in the case of the 'Apdu’ type [PRIVATE 1] isencoded to a sequence of bytes making it possible for adecoder
to look at the (initial) bytes that arrive and determine whether the rest of the bytes must be of the type associated with
that particular sequence of bytes. This means that each tag must be uniquely associated with only one ASN.1 type.

Immediately following the tag is a sequence of bytes informing the decoder of the length of the instance. This is
sometimes referred to as TLV (Tag length value) encoding. Hence, the structure of a BER encoded series of bytes
is as shown in the table below.

Tag Len Vaue

Table 1.5: Structure of a BER encoded series of bytes

1.1.12 Encoding Rules

When the first recommendation on ASN.1 was released 1988 it was accompanied with the Basic Encoding Rules,
BER, as the only alternative for encoding. BER is a somewhat verbose protocol. It adopts a so-called TLV (type,
length, value) approach to encoding in which every element of the encoding carries some type information, some
length information and then the value of that element. Where the element is itself structured, then the Value part of
the element isitself a series of embedded TLV components, to whatever depth is necessary. In summary, BER is not
acompact encoding but isrelatively fast and easy to produce.

The DER (Distinguished Encoding Rule) encoding format was included in the standard in 1994. It is a specialized
form of BER, which gives the encoder the option to encode some entities differently. For instance, is the value for
TRUE any octet with any bit set to one. But, DER does not leave any such choices. The value for TRUE in the DER
caseisencoded asthe octet 11111111. So, the same value encoded by two different DER encoders must result in
the same bit stream.

A more compact encoding is achieved with the Packed Encoding Rules PER which was introduced together with the
revised recommendation in 1994. PER takes arather different approach from that taken by BER. Thefirst differenceis
that the tag part in the TLV is omitted from the encodings, and any tagsin the notation are not encoded. The potential
ambiguities are resolved as follows:

« A CHOICE is encoded by first encoding a choice index which identifies the chosen alternative by its position
in the notation.

* Theelementsof aSEQUENCE are transmitted in textual order. OPTIONAL or DEFAULT elements are preceded
by a bit map to identify which elements are present. After sorting the elements of a SET in the "canonical tag
order" asdefined in X.680 8.6 they are treated asa SEQUENCE regarding OPTIONAL and DEFAULT elements.
A SET istransferred in the sorted order.

A second differenceisthat PER takes full account of the sub-typing information in that the encoded bytes are affected
by the constraints. The BER encoded bytes are unaffected by the constraints. PER uses the sub-typing information to
for example omit length fields whenever possible.

The run-time functions, sometimes take the constraints into account both for BER and PER. For instance are SIZE
constrained strings checked.

There are two variants of PER, aligned and unaligned. In summary, PER results in compact encodings which require
much more computation to produce than BER.

28| Ericsson AB. All Rights Reserved.: ASN.1

1.2 Specialized Decodes

1.2 Specialized Decodes

When performanceis of highest priority and oneisinterested in alimited part of the ASN.1 encoded message, before
one decide what to do with the rest of it, one may want to decode only this small part. The situation may be a server
that hasto decide to which addresseeit will send amessage. The addressee may be interested in the entire message, but
the server may be a bottleneck that one want to spare any unnecessary load. Instead of making two complete decodes
(the normal case of decode), one in the server and one in the addressee, it is only necessary to make one specialized
decode(in the server) and another complete decode(in the addressee). The following specialized decodes exclusive
decode and selected decode support to solve this and similar problems.

So far this functionality is only provided when using the optimized BER_BIN version, that is when compiling with
the optionsber _bi n and opt i nmi ze. It does also work using thedr i ver option. We have no intent to make this
available on the default BER version, but maybe in the PER_BIN version (per _bi n).

1.2.1 Exclusive Decode

The basic idea with exclusive decode is that you specify which parts of the message you want to exclude from being
decoded. These parts remain encoded and are returned in the value structure as binaries. They may be decoded in turn
by passing them to a certain decode_part/ 2 function. The performance gain is high when the message is large
and you can do an exclusive decode and later on one or several decodes of the parts or a second complete decode
instead of two or more complete decodes.

How To Make It Work
In order to make exclusive decode work you have to do the following:

* First,decide the name of the function for the exclusive decode.

e Second, write instructions that must consist of the name of the exclusive decode function, the name of the
ASN.1 specification and a notation that tells which parts of the message structure will be excluded from decode.
These instructions shall be included in a configuration file.

* Third, compile with the additional option asnlconfi g. The compiler searches for a configuration file with
the same name as the ASN.1 spec but with the extension .asnlconfig. This configuration file is not the same as
used for compilation of a set of files. See section Writing an Exclusive Decode Instruction.

User Interface

Therun-time user interface for exclusive decode consists of two different functions. First, the function for an exclusive
decode, whose name the user decides in the configuration file. Second, the compiler generatesadecode_part/ 2
function when exclusive decode is chosen. This function decodes the parts that were left undecoded during the
exclusive decode. Both functions are described below.

If the exclusive decode function hasfor examplegot thenamedecode_excl usi ve andan ASN.1 encoded message
Bi n shall be exclusive decoded, the call is:

{ ok, Excl _Message} = ' MyModul e' : decode_excl usi ve(Bi n)

The result Excl _Message has the same structure as an complete decode would have, except for the parts of
the top-type that were not decoded. The undecoded parts will be on their place in the structure on the format
{Type_Key, Undecoded_Val ue}.

Each undecoded part that shall be decoded must be fed into thedecode_part / 2 function,like:

{ok, Part _Message} = ' MyModul e' : decode_part (Type_Key, Undecoded_Val ue)

Ericsson AB. All Rights Reserved.: ASN.1 | 29

1.2 Specialized Decodes

Writing an Exclusive Decode Instruction

Thisinstruction iswritten in the configuration file on the format:

Excl usi ve_Decode_| nstructi on = {excl usi ve_decode, { Modul e_Nane, Decode_| nstructi ons}}.
Modul e_Nanme = at om()

Decode_l nstructions = [Decode_Il nstruction]+

Decode_I nstruction = {Excl usi ve_Decode_Functi on_Nane, Type_Li st}

Excl usi ve_Decode_Functi on_Nanme = atomn()

Type_Li st = [Top_Type, El ement _Li st]

El ement _List = [El enent] +

El ement = {Nane, parts} |
{Name, undecoded} |
{ Nane, El ement _Li st}

Top_Type = atom()

Name = atom()

Observe that the instruction must be avalid Erlang term ended by a dot.

In the Type_Li st the "path" from the top type to each undecoded sub-components is described. The top type of
the path is an atom, the name of it. The action on each component/type that follows will be described by one of
{Nane, part s}, {Name, undecoded}, {Nane, El ement Li st}

The use and effect of the actions are:

« {Nane, undecoded} Tellsthat the element will be left undecoded during the exclusive decode. The type of
Name may be any ASN.1 type. The value of element Name will be returned as a tuple,as mentioned above, in
the value structure of the top type.

 {Nane, part s} Thetype of Name may be one of SEQUENCE OF or SET OF. The action implies that the
different components of Name will be left undecoded. The value of Name will be returned as a tuple, as above
, Where the second element is alist of binaries. That is because the representation of a SEQUENCE OF/ SET
OF in Erlang isalist of itsinternal type. Any of the elements of thislist or the entire list can be decoded by the
decode_part function.

e« {Nane, El enent _Li st} Thisaction isused when one or more of the sub-types of Name will be exclusive
decoded.

Name in the actions above may be a component name of a SEQUENCE or a SET or a name of an aternative in a
CHOICE.

Example

In the examples below we use the definitions from the following ASN.1 spec:

GUI DEFI NI TI ONS AUTOVATI C TAGS :: =

BEG N

30 | Ericsson AB. All Rights Reserved.: ASN.1

1.2 Specialized Decodes

Action ::= SEQUENCE
{
nunmber | NTEGER DEFAULT 15,
handl e [0] Handl e DEFAULT {nunber 12, on TRUE}

}

Key ::= [11] EXPLICI T Button
Handl e ::= [12] Key
Button ::= SEQUENCE
{
nunmber | NTEGER,
on BOOLEAN

}

W ndow ::= CHO CE

{
vsn | NTECGER,

status E

}

Status ::= SEQUENCE

{
state | NTEGER,

but t onLi st SEQUENCE OF Butt on,

enabl ed BOOLEAN OPTI ONAL,

actions CHO CE {
possi bl eActi ons SEQUENCE OF Acti on,
noCf Acti ons | NTEGER

END

If Button is a top type and we want to exclude component nunber from decode the Type List in the
instruction in the configuration file will be [' Butt on', [{nunber, undecoded}]] . If we cal the decode
function decode_Butt on_excl usi ve the Decode Instruction will be { decode_Butt on_excl usi ve,
['Button',[{nunmber, undecoded}]]}.

We a'so have another top type W ndow whose sub component actions in type St at us and the parts of component
but t onLi st shall be left undecoded. For this type we name the function decode__ W ndow_excl usi ve. The
whole Exclusive_Decode_Instruction configuration is as follows:

{excl usi ve_decode, {' GUI ',
[{decode_W ndow_excl usi ve, [' Wndow , [{status, [{buttonList, parts}, {actions, undecoded}]}]]},
{decode_Butt on_excl usi ve, [' Button', [{nunber, undecoded}]]}]}}.

slate buttenlist enabled aclions: possibleActions

Figure 2.1: Figure symbolizes the bytes of a Window:status message. The components buttonList and actions are
excluded from decode. Only state and enabled are decoded when decode__Window_exclusive is called.

Compiling GUI.asn including the configuration file is done like:

Ericsson AB. All Rights Reserved.: ASN.1 | 31

1.2 Specialized Decodes

uni x> erlc -bber_bin +optimn ze +asnlconfig GU .asn

erl ang> asnlct:conpile(' GU "', [ber_bin, optim ze, asnlconfig]).

The module can be used like:

1> Button_Msg = {'Button', 123, true}.
{'"Button', 123, true}
2> {ok, Button_Bytes} = 'GU"':encode('Button', Button_Msg).
{ok, [<<48>>,
[6],

[<<128>>,
[11,
123],
[<<129>>,
[1],
255] 1}
3> {ok, Excl usi ve_Msg_Button} = 'GU':decode_Button_exclusive(list_to_binary(Button_Bytes)).
{ok, {'Button', {'Button_nunber', <<28, 1, 123>>},
true}}
4> ' QU ' : decode_part (' Button_nunber', <<128, 1, 123>>).
{ok, 123}

5> W ndow_Msg =
{' Wndow , {status, {' Status', 35,

[{'Button', 3,true},
Button', 4, fal se},
Button', 5, true},
Button', 6, true},
Button', 7, fal se},
Button', 8, true},
Button', 9, true},
Button', 10, f al se},
Button', 11, true},
Button', 12, true},
Button', 13, fal se},
Button', 14, true}],

fal se,

{possi bl eActions, [{' Action', 16,{' Button',17,true}}]}}}}.
{' Wndow , {status, {' Status', 35,

[{'Button', 3,true},
{'Button', 4, fal se},
Button', 5, true},
Button', 6, true},
Button', 7, fal se},
Button', 8, true},
Button', 9, true},
Button', 10, f al se},
Button', 11, true},
Button', 12, true},
Button', 13, fal se},
Button', 14, true}],

fal se,

{possi bl eActions, [{' Action', 16,{' Button',17,true}}]}}}}
6> {ok, Wndow Byt es}="'GU "' : encode(' Wndow , W ndow_Msg) .
{ok, [<<161>>,

[127],
[<<128>>,

e LR Lt Rate R R e R R R

e R R R R Rt R R R R

8> {ok, {status,{' Status',|nt,{Type_Key_SeqCf, Val _SEQOF},

32| Ericsson AB. All Rights Reserved.: ASN.1

1.2 Specialized Decodes

Bool Opt , { Type_Key_Choi ce, Val _Choice}}}}=
' QU ' : decode_W ndow_st at us_excl usi ve(list_to_bi nary(W ndow _Bytes)).
{ok, {status, {' Status', 35,

{" Status_buttonList', [<<48,6, 128, 1, 3, 129, 1, 255>>,
<<48, 6, 128, 1, 4, 129, 1, 0>>,
<<48, 6,128, 1, 5, 129, 1, 255>>,
<<48, 6, 128, 1, 6, 129, 1, 255>>,
<<48,6,128,1,7,129, 1, 0>>,
<<48, 6, 128, 1, 8, 129, 1, 255>>,
<<48, 6,128, 1,9, 129, 1, 255>>,
<<48, 6,128, 1, 10, 129, 1, 0>>,
<<48, 6,128, 1, 11, 129, 1, 255>>,
<<48, 6,128, 1, 12, 129, 1, 255>>,
<<48, 6,128, 1, 13,129, 1, 0>>,
<<48, 6, 128, 1, 14, 129, 1, 255>>] },

fal se,

{" Status_actions',
<<163, 21, 160, 19, 48, 17, 2, 1, 16, 160, 12, 172, 10, 171, 8, 48, 6,128, 1, ...>>}}}}
10> ' QU ' : decode_part (Type_Key_SeqOf, Val _SEQOF) .

{ok,[{"Button', 3, true},
"Button', 4, fal se},
‘Button', 5, true},
‘Button', 6, true},
"Button', 7, fal se},
‘Button', 8, true},
"Button', 9, true},

‘Button', 10, fal se},

"Button', 11, true},

"Button', 12, true},

‘Button', 13, fal se},

"Button', 14,true}]}

11> ' QU ' : decode_part (Type_Key_SeqOf, hd(Val _SEQCF)) .
{ok,{"Button', 3,true}}

12> ' QU ' : decode_part (Type_Key_Choi ce, Val _Choi ce) .

{ ok, {possi bl eActions,[{' Action',16,{' Button',17,true}}]}}

A A A e A e

1.2.2 Selective Decode

This specialized decode decodes one single subtype of a constructed value. It is the fastest method to extract one sub
value. The typical use of this decode is when one want to inspect, for instance a version number,to be able to decide
what to do with the entire value. Theresult isreturned as{ ok, Val ue} or{error, Reason}.

How To Make It Work
The following steps are necessary:

* Writeinstructionsin the configuration file. Including the name of a user function, the name of the ASN.1
specification and a notation that tells which part of the type will be decoded.

« Compilewith the additional option asnlconf i g. The compiler searches for a configuration file with the same
name as the ASN.1 spec but with the extension .asnlconfig. In the same file you can provide configuration
specs for exclusive decode as well. The generated Erlang module has the usual functionality for encode/decode
preserved and the specialized decode functionality added.

User Interface

The only new user interface function is the one provided by the user in the configuration file. You can invoke that
function by the Mbdul eNane: Funct i onNane notation.

Ericsson AB. All Rights Reserved.: ASN.1 | 33

1.2 Specialized Decodes

So, if you have the following spec {sel ective_decode, {' Modul eNane',
[{sel ect ed_decode W ndow, TypeList}]}} in the con-fig file, you do the selective decode by
{ok, Resul t } =" Mbdul eNan®' : sel ect ed_decode_W ndow EncodedBi nary).

Writing a Selective Decode Instruction

It is possible to describe one or many selective decode functionsin a configuration file, you have to use the following
notation:

Sel ecti ve_Decode_I nstruction = {sel ective_decode, { Modul e_Name, Decode_I nstructions}}.
Modul e_Nanme = at om()

Decode_l nstructions = [Decode_Il nstruction]+

Decode_lnstruction = {Sel ecti ve_Decode_Functi on_Nare, Type_Li st}

Sel ecti ve_Decode_Functi on_Name = at om()

Type_Li st = [Top_Type| El ement _Li st]

El ement _Li st = Nane| Li st _Sel ect or

Name = aton()

Li st_Selector = [integer()]

Observe that the instruction must be avalid Erlang term ended by a dot.

The Modul e_Nane is the same as the name of the ASN.1 spec, but without the extension. A
Decode_| nstructi onisatuplewithyour chosen function name and the components from the top type that leads
to the single type you want to decode. Notice that you have to choose aname of your function that will not be the same
as any of the generated functions. Thefirst element of the Type_Li st isthetop type of the encoded message. In the
El enent _Li st itisfollowed by each of the component names that |eads to selected type. Each of the namesin the
El enent _Li st must be constructed types except the last name, which can be any type.

The List_Selector makes it possible to choose one of the encoded components in a SEQUENCE OF/ SET OF. It
is aso possible to go further in that component and pick a sub type of that to decode. So in the Type_Li st:
[Wndow , status, buttonList,[1], nunber] thecomponentbut t onLi st hastobeaSEQUENCE OF
or SET OF type. In this example component nunber of the first of the encoded elements in the SEQUENCE OF
but t onLi st isselected. This apply on the ASN.1 spec above.

Another Example

In this example we use the same ASN.1 spec as above. A valid selective decode instruction is:

{sel ecti ve_decode,
{rau,
[{sel ect ed_decode_W ndowl,
['" W ndow , st at us, buttonlLi st,
[1],
nunber] },
{sel ect ed_decode_Acti on,
["Action', handl e, nunber] },
{sel ect ed_decode_W ndow2,
[" W ndow ,
st at us,
acti ons,

34 | Ericsson AB. All Rights Reserved.: ASN.1

1.2 Specialized Decodes

possi bl eActi ons,

[1].
handl e, nunber]}]}}.

Thefirst Decode_| nstruction,{sel ect ed_decode_W ndowl, [' W ndow , st at us, buttonlLi st,
[1] , nunmber]} is commented in the previous section. The instruction {sel ect ed_decode_Acti on,
["Action', handl e, nunber]} picksthecomponent nunber inthehandl e component of thetype Act i on.
If we have thevalue Val Action = {'Action',17,{' Button',b 4711, fal se}} theinterna value 4711
should be picked by sel ect ed_decode_Act i on. Inan Erlang terminal it looks like:

Val Action = {'Action', 17, {' Button', 4711, fal se}}.
{"Action',17,{' Button', 4711, fal se}}
7> {ok, Bytes}="GU ':encode(' Action', Val Acti on).

8> BinBytes = |list_to_binary(Bytes)