Under consideration for publication in Theory and Practice of Logic Programming 1

SWI-Prolog and the Web

JAN WIELEMAKER

Human-Computer Studies laboratory
University of Amsterdam
Matrixz 1
Kruislaan 419
1098 VA, Amsterdam
The Netherlands

(e—mail: wielemak@science.uva. nl)

ZHISHENG HUANG, LOURENS VAN DER MELJ

Computer Science Department
Vrije University Amsterdam
De Boelelaan
1081 HV, Amsterdam
The Netherlands
(e-mail: huang,lourens@cs.vu.nl)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Prolog is an excellent tool for representing and manipulating data, written in formal lan-
guages as well as natural language. Its safe semantics and automatic memory management
make it an ideal tool for programming robust web services.

We propose a server architecture where Prolog communicates to other components in
the web-server using HT'TP. By turning Prolog into an HT'TP server and client we reach at
a more flexible server organization as well as easier deployment and debugging compared
to embedding Prolog in an existing server network.

This paper presents the enabling extensions to the Prolog language such as Unicode
and multi-threading support as well as the enabling libraries for handling web documents
and protocols. The described libraries support a wide range of web applications ranging
from HTML and XML documents to Semantic Web RDF processing.

The benefits using Prolog for web-related tasks is illustrated using three case studies.

KEYWORDS: Prolog, HI'TP, HTML, XML, RDF

1 Introduction

The Web is an exiting place offering new opportunities to Al techniques and Logic
Programming. Information extraction from the Web, reasoning inside web servers
and the Semantic Web are just a few examples.

There are two views on deploying Prolog for web-related tasks. In the most
popular view, Prolog acts as an embedded component in a general web processing
environment such as Tomcat or Apache. In this role it generally does reasoning
tasks such as searching or configuration within constraints. Alternatively Prolog

2 J. Wielemaker, Z. Huang and L van der Meij

itself can act as a stand-alone HTTP server as also proposed by ECLiPSe (

). In this view it is a component that can be part of any of the layers of
the popular three-tier architecture for web-application, generally exchanging XML
if used as part of the backend or middleware services or HTML when used in the
presentation layer.

The latter view is in our vision more attractive. Using HTTP and XML, the
service is cleanly isolated using standard protocols rather than proprietary ad-hoc
embedded communication. Running as a stand-alone application, the attractive
interactive development nature of Prolog can be maintained much more easily than
embedded in a C, C++, Java or C# application. Automatic testing of the Prolog
components can be done using any web-oriented test framework. TBD: example
Talking HT'TP, Prolog can easily play role in any part of the service architecture
or even realise the entire service in one or more Prolog processes.

TBD: project names and references The libraries and Prolog extensions to
provide this support have been realised in the context of various research projects
over a long period. The SGML, HTML and XML parser was realised when docu-
ment fragmentation and classification was our main topic. The HT'TP libraries have
been realised in the context of agent-based programming. The RDF read/write and
storage libraries result from projects on ontology-based annotation and search.

This paper is organized as follows. Section 2 to Sect. 3.3 describe reading, writing
and representation of web-related documents. Section 4 describes the architecture
of the extensible HTTP client and server libraries. Section 5 describes core exten-
sions to the Prolog language that facilitate use in web-services. Section 6 to Sect. 8
describe three case studies exploiting Prolog as Sematic Web query service, com-
ponent in a DL reasoning service and smart portal for a Sematic Wed database.

2 Parsing and representing XML and HTML documents

The core of the Web is formed by document standards and exchange protocols. Pro-
tocols are described in Sect. 4. We consider two types of documents: tree-structured
documents transferred as SGML or XML applications and graph-structured doc-
uments forming the heart of the Semantic Web. Graph structured documents are
described in Sect. 3.1. Here we concentrate on markup languages.

HTML, an SGML application, is the most commonly used document format
on the web. HTML represents documents as a tree using a fixed set of elements
(tags), where the SGML DTD (Document Type Declaration) puts constraints on
how elements can be nested. Each node in the hierarchy has a name (the element-
name), a set of name-value pairs known as its attributes and a content, a sequence of
sub-elements and text (data). Initially HTML elements were oriented on semantics,
using tags like author. Later extensions concentrated more on layout to facilitate
WYSIWYG editors, introducing elements such as font.

XML is a rationalisation of SGML using the same tree-model, but removing many
seldomly used features as well as abbreviations that were introduced in SGML to
make the markup easier to type and read by humans. Examples are the short-
tag notation (<b/bold-text/), the short-ref notation where normal characters can

SWI-Prolog and the Web 3

(document) = list-of (content)
(content) m= (element)

| (pi)

| {cdata)

| (sdata)

| (ndata)
(element) w= element((tag), list-of (attribute), list-of (content))
(attribute) = (name) = (value)
(p) == pi({atom))
(sdata) := sdata((atom))
(ndata) := ndata((atom))
(cdata) = (atom)
(name) = (atom)
(value) = (svalue)

| list-of (svalue)
(svalue) = (atom)

| (number)

Fig. 1. SGML/XML tree representation in Prolog. The notation list-of (x) describes
a Prolog is of terms of type (z).

take the role of tags in specified context, so name=value is automatically translated
into a tree and the omitted-tag feature that allows the user to omit tags that can
be inferred automatically from the context. The omitted-tag feature allows HTML
documents to omit closing a paragraph using </p>. Disambiguating these abbrevi-
ations require the document syntax (DTD) and relatively complicated software.

XML documents are used to represent text using custom application-oriented tags
as well as a serialization protocol for arbitrary data exchange between computers.
XHTML is HTML based on XML rather than SGML.

The first SGML parser for SWI-Prolog was created by Anjo Anjewierden based on
the SP parser by James Clark. A stable Prolog term-representation for SGML /XML
trees plays a similar role as the DOM (Domain Object Model) representation in use
in the object-oriented world. The term-structure is described in Fig. 1. Some issues
have been subject to debate.

o An SGML/XML document consists of a single element, so (document) could
have been (element) instead of a content-list. We have choosen for the list
notation for uniform handling of partial and full documents.

e Representation of text by a Prolog atom is biased by the use of SWI-Prolog
which has no length-limit on atoms and atoms that can represent Unicode text
(see Sect. 5.2). At the same time SWI-Prolog stacks are limited to 128MB.
Using atoms only the structure of the tree is represented on the stack, while
the bulk of the data is stored on the unlimited heap. Especially Prolog im-
plementations with unlimited stacks and packed arrays for storing strings
can consider using strings for data. Using lists of character codes is another
possibility addopted by both PilloW and ECLiPSe. Two observations make
lists less attractive: lists use two cells per character while practical experi-
ence shows text is frequently processed as a unit only. This is especially true

4 J. Wielemaker, Z. Huang and L van der Meij

for XML documents representing serialized data-structures, where it is also
common to see the same value appearing many times in the document.

o Attribute values of multi-values attributes (e.g. NAMES) are returned as a Pro-
log list. This implies the DTD must be available to get unambiguous results.
With SGML this is true anyway, but not with XML.

e Optionally attribute values of type NUMBER or NUMBERS are mapped to Prolog
numbers. In addition to the DTD issues mentioned above, this conversion also
suffers from possible loss of information. Leading zeros and float notation used
is lost after conversion. Prolog systems with bounded arithmetic may also not
be able to represent all values. Still, automatic conversion is useful in many
applications, especially involving serialized data-structures.

e Attribute values are represented as Name= Value. Using Name(Value) is an
alternative. The Name= Value representation was choosen for its similarity
to the SGML notation as avoiding the need for univ (=..) for processing
argument-lists

Realisation The SWI-Prolog SGML/XML parser is a C-library that has been built
from scratch to reach at a lightweight parser. Total source is 11,835 lines. The
parser provides two interfaces. Most natural to Prolog is load_structure/3 which
parses a Prolog stream into a term as described above. Alternatively, sgml_parse/2
provides an event-based parser doing call-backs on Prolog for the SGML events. The
call-back mode can deal with unbounded documents in streaming mode. It can be
mixed with the term-creation mode, a feature that can be used to process long files
with a repetative record structure in limited memory. Section 3.1 describes how
this is used to process RDF documents.

Full documentation is available from http://www.swi-prolog.org/packages/
sgml2pl.html The SWI-Prolog SGML parser has been adopted by XSB Prolog.

2.1 Generating documents from its Herbrand Term

If Prolog is used as a document processing or filtering tool, documents are read into
a Herbrand Term as described in Sect. 2. The obvious continuation is to process this
term into a new term and make it available again as SGML or XML document. This
functionality is provided by the library sgml _write.pl. The library is complicated
due to character encoding issues and different tradeoffs between strict maintenance
of whitespace and layout for human readability.

2.2 Generating documents using DCG

The traditional method for creating web-documents is using print routines such
as write/1, writef/2 or format /2. Although simple and easy explain to novices,
the approach has serious drawbacks from a software engineering point of view.
In particular one has to be careful about HTML quoting rules, character encoding
issues and ensure the code produces a valid HTML document. Automatic validation
is vitually impossible using this approach.

http://www.swi-prolog.org/packages/sgml2pl.html
http://www.swi-prolog.org/packages/sgml2pl.html

SWI-Prolog and the Web 5
mkthumbnail (URL, Caption, ThumbNail),
output_html ([env(hi, [], ["Photo gallery"l),
ThumbNail
D.

mkthumbnail (URL, Caption, Term) :-
Term = [env(table, [],
[tr$[], td$[halign=center], img$[src=URL],
tr$[], td$[halign=center], Caption
ID]

Fig. 2. Building PiLLoW terms

Alternatively we can produce a DOM term as describes in Sect. 2 and use the
library described in Sect. 2.1 to create the HTML or XML document. Such doc-
uments are guaranteed to use proper nesting of elements, escape sequences and
character encoding. The terms however are big, deeply nested and hard to read
and write. Prolog allows them to be built from skeletons containing variables. This
approach is taken by PiLLoW (Sect. 2.3) to control the complexity. In our opinion,
the result is hard to read and write due to the unnatural order of statements as illus-
trated in Fig. 2 PilloW has partly overcome this shortcomming by defining a large
number of ‘utility terms’ that are translated in a special way. TBD: examples

We introduced a DCG rules html//1. This rule translates proper trees into a
list of high-level HTML/XML commands that are handed to html_print/1 to re-
alise proper quoting, character encoding and layout. The intermediate format is of
no concern to the user and similar in structure to the ‘flat’ version of the PilloW
representation, opening elements, inserting—quoted—text, and closing elements.
Generated from the tree representation however, proper open and close of elements
is guaranteed. Instead of passing sub-terms using variables, we allow for \Rule
embedded in the argument of html//1. It causes the grammar rule to call Rule.
Figure 3 illustrates our approach. Note that any reusable part of the page gener-
ation can easily be translated into a DCG rule and the difference between direct
translation of terms to HTML and rule-invocation is eminent.

In our current implemetation rules are called using meta-calling from html//1.
Using term_expansion/2 it is straightforward to move the rule invocation out of
the term, using variable substitution similar to PilloW. It is now also possible to
recursively expand the generated tree and validate it to the HTML DTD at compile-
time and even insert omitted tags at compile-time to generate valid XHMTL from
an incomplete specification. A complete overview of the argument to html//1 is
given in Fig. 4.

2.3 Comparing to PiLLoW

The PiLLoW library (?) is another well established framework for web-
programming based on Prolog. PiLLoW defines html2terms/2, converting be-

6 J. Wielemaker, Z. Huang and L van der Meij

affiliation_table :-
findall (Name-Aff, affiliation(Name, Aff), PairsO),
keysort (Pairs0O, Pairs),
reply_page (table([border(2) ,align(center)],
[tr([th(’Name’), th(’Affiliation’)])
| \affiliations(Pairs)

DD

affiliations([]) -->
0.
affiliations([H|T]) -->
affiliation(H),
affiliations(T).

affiliation(Name-Aff) -->
html (tr (td (Name), td(Aff))).

% database
affiliation(wielemaker, uva).
affiliation(huang, vu).
affiliation(’van der meij’, vu).

% Page template

reply_page(Term) :-
format (’Content-type: text/html™n"n’),
phrase (html (Term), Tokens),
print_html (Tokens) .

Fig. 3. Library html_write.pl in action

(html) list-of (content)
(content)
(atom)

& (entity)

(tag) (list-of (attribute), (html))
(tag)((htmD)
\(rule)

name) ({(value))
atom)

atom)

atom)

number)
callable)

(content)

/\/\/\/\
o 4~
3 8
F<S
S
<
<
[

(
(
(
(
(
{

(rule)

Fig. 4. The html//1 argument specification

tween an HTML string and document represented as a Herbrand term. There are
fundamental differences between PiLLoW and the primitives described here.

e PiLLoW uses a term that is passed to html2terms/2. Complex terms by
composing them using partial terms passed through Prolog variables, where
our approach inserts \ escape sequences calling DCG rules. As a result, Pil.-

SWI-Prolog and the Web 7

[env(table, [1, [tr$[], td$[], "Hello"])]

[element (table, [1,
[element(tbody, I[1,
[element(tr, [],
[element(td, [rowspan=’1’, colspan=’1’],

[’Hello’1)1D1D1)]

Fig. 5. Term representations for <table><tr><td>Hello</table> in PiLLoW
(top) and our parser (bottom). Our parser completes the tr and td environments,
inserts the omitted tbody element and inserts the defaults for the rowspan and
colspan attributes

LoW defines a large number of ‘convenience terms’ that are handled special,
while in our approach new high-level primitive can be defined and used natu-
rally using DCG definitions and \ terms to call them. In a way, the approaches
are complementary, as the output of our html//1 DCG produces a list of to-
kens similar in spirit to html2terms/2 without environents. This format
with all its special shorthands however is not exposed to the user.

e The PiLLoW parser does not create the SGML document tree. It does not
insert omitted tags, default attributes, etc. As a result, HTML documents that
differ only in omitted tags and whether or not default attributes are included
in the source produce different terms. In our approach the term representation
is equivalent, regardless of the input document. This is ilustrated in Fig. 5.
Having a cannonical DOM representation greatly simplifies processing parsed
HTML documents.

3 RDF documents

Where the datamodel of both HTML and XML is a tree-structure with
attributes, the datamodel of the Semantic Web RDF language consists of
{Subject, Predicate, Object} triples. Both Subject and Predicate are a URL' Ob-
ject is either a URI or a Literal. As the Object of one triple can be the Subject of
another, a set of triples forms a graph, where each edge is labeled with a URI (the
Predicate) and each vertex is either a URI or a literal. Literals have no out-going
edges. Figure 6 illustrates this.

A number of languages are layered on of the RDF triple model. RDFS provides
a frame-based representation. The OWL-dialects provide three increasingly com-
plex Description Logic (DL) languages. TBD: ref SWRL is a proposal for a rule
language.

The W3C standard for exchanging these triple models is an XML application
known as RDF/XML.? This representation is widely accepted, but at the same

1 URI: Uniform Resource Identifier is like a URL, but need to refer to an existing resource on
the Web.
2 http://www.u3.org/RDF/

http://www.w3.org/RDF/

8 J. Wielemaker, Z. Huang and L van der Meij

Special Issue
rdf:label rdf:type rdf:type
e \ \
Massimo ogic Programming
Marchiori and the Web

Fig. 6. Sample RDF graph. Ellipses are vertices representing URIs. Quoted text is
a literal. Edges are labeled with URIs.

"Massimo Marchiori"

dc:editor issue_in

(subject) == (URI)

(predicate) = (URI)

(object) (URI)
literal((lit_value))

(lit_value) (text)

lang((langid), (text))
type({URI), (text))

(URI) (atom)
(text) = (atom)
(langid) = (atom) (ISO639)

Fig. 7. RDF types in Prolog.

time critized for its poor readability and complex parser requirements. Two popular
alternative representations are Turtle and N3. TBD: Refs!

As there are multiple XML tree representations for the same triple-set as well
as multiple RDF serialization formats, RDF documents cannot be processed at the
level of the DOM as described in Sect. 2. The triple and graph-representation are
clearly the most natural representations for an RDF document in Prolog. First we
must decide on the representation of URIs and literals. As a URI is a string and
the only operation defined on URIs by SW languages is equivalence test, using a
Prolog atom is the clear winner.? Literals are expressed as literal(Value). The full
type description is in Fig. 7.

The typical SW use-scenario is to ‘harvest’ triples from multiple sources and
collect them in a database before start reasoning with them. This requires
for access as a Prolog predicate. Here we have two options. One is the obvi-
ous predicate rdf(Subject, Predicate, Object) using the argument types described
above. The alternative is to map each RDF predicate on a Prolog predicate
Predicate(Subject, Object). We have choosen for rdf/3 because it makes queries
with uninstantiated predicates much easier and a single predicate makes it easier to
manage the predicate and module namespaces than an unbounded set of predicates
with unknown names.

3 Some people may consider introducing a representation based on the notion of XML namespaces,
such as NS: Local. Decomposing a URI into its namespace and local name however is only relevant
during I/O, while such a representation is more expensive, both considering memory usage and
time. Also consider indexing if URIs are asserted into the Prolog database.

SWI-Prolog and the Web 9

load_triples(File, Options) :-
process_rdf (File, assert_triples, Options).

assert_triples([], _).

assert_triples([rdf(S,P,0)|T], Src) :-
rdf_assert(S, P, 0, Src),
assert_triples(T, Src).

Fig. 8. Loading triples using process_rdf/3

3.1 Input and output of RDF documents

The RDF/XML parser is realised as a Prolog library on top of the XML parser
described in Sect. 2. Similar to the XML parser it has two interfaces. The
load_rdf(+Src, -Triples, +Options) parses a document and returns a Prolog list of
rdf(S,P,0) triples. Note that despite harvesting to the database is the typical use-
case scenario, the parser delivers a list of triples for maximal flexibility. The pred-
icate process_rdf(+Sre, :Action, +Options) exploits the mixed call-back/convert
mode of the XML parser to process the RDF file one description (record) at a
time, calling Action with list a triples extracted from the description. Figure 8
illustraces how this is used by the storage module to load unbounded files with
limited stack usage. Source location as (file):(line) is passed to the Src argument of
assert_triples/2.

The parser from XML and RDF triples covers the full RDF specification, includ-
ing Unicode handling, RDF datatypes and RDF language tags. The Prolog source is
1,788 lines. It processes approximately 12,000 triples per second on an AMD 1600+
based computer. Implementation details and evaluation of the parser are described
in ()4

Writing RDF /XML documents is supprisingly complicated, especially consider-
ing human-readable output. In the first phase we resolve all namespaces used in the
graph as we have to declare these in the document header. As we only have triples
and URIs we have to process each URI in each triple to collect the set of names-
paces. In the write phase we process the triples grouped by subject, creating one
RDF description per subject. First we write all named subjects and in-line anony-
mous subjects referenced by the named subject. At the end we write all anonymous
(un-named) subjects that have not been written as part of the description of a
named subject.

We have two libraries for writing RDF/XML. One,
rdf_write_xml(+Stream, +Triples), is the inverse of load_rdf/2, writing an
XML document from a list of rdf(S,P,0) terms. The other, called rdf_save/2 is
part of the RDF storage module, writing a named graph or the entire database
directly from the database. The first (rdf_write_xml/2) is frequently used to
exchange computed graphs to external programs using network communication,
while the second (rdf_save/2) is more used to save modified graphs back to file. The

4 The parser described did not support RDF datatypes and RDF language tags.

10 J. Wielemaker, Z. Huang and L van der Meij

Index pattern Calls

- - 58
- 253,554
- 62
23,292,353
633,733
7,807,846
26,969,003

+
Jr

+4 0+

+ o+

Table 1. Call-statistics on a real-world system

resulting code duplication is unfortunate, but unavoidable. Creating a temporary
named graph in the database requires potentially much memory, and harms
concurrency, while graphs fetched from the database into a list may not fit in the
Prolog stacks and is also considerably slower than a direct write.

3.2 Storage of RDF

Assuming the ‘harvesting’ use-case, we need to realise a predicate rdf(2S,2P,?0).
Indexing the database is crucial for good performance. Table 1 illustrates the calling
pattern from a real-world application with over 4 million triples. In addition, we
know our data is described by Fig. 7. The RDF store was developed in the context
of a project which formulated the following requirements. TBD: name projects
and web pages. MIA, HOPS and MultiMedian

e Upto at least 10 million triples on 32-bit hardware.

e Fast graph traversal using any instantion pattern.

Include rdfs:subPropertyOf in search with small overhead. TBD: explain
rdfs:subPropertyOf

Case-insensitive search on literals.

Prefix search on literals for completion in the UI.

Searching for words that appear in literals.

Multi-threaded access based on read/write locks.

Transaction management and persistent store.

Maintain source information, so we can update, save or remove data based
on its source.

e Fast load/save of current state.

Within SWI-Prolog, especially the indexing and space-requirements to scale to
10 million triples formed the bottleneck. Considering the C-interface that supports
non-deterministic predicates implemented in C we decided to realise the low-level
store in C. For the store we took the following design decisions.

e The RDF predicates are represented as unique entities and organised accord-
ing to the rdfs:subPropertyOf relation in multiple hierarchies. The root of the

SWI-Prolog and the Web 11

hierarchy is used to compute the hash for the triple. If there is no unique root
due to a cycle an arbitrary predicate is assigned to be the root.

e Literals are kept in an AVL tree, sorted case-insensitive and case-preserving
(e.g. AaBb...). The uppercase version is used to determine the hash-key of
the triple. Space is saved by avoiding duplicates and lost by the AVL nodes.
Practical experience on real-life data ranges between -5% to +10%.

e Resources are represented by Prolog atom-handles. The hash is computed
from the handle-value. Note that avoiding the translation between Prolog
atom and text both avoids duplication of data, but also a table-lookup. We
consider this a crusial aspect.

e Each source is represented by a structure in a hash-table. for each source we
maintain a triple-count and an MD5 sum computed from the set of triples
that belong to the source. The MD5 sum is computed per-triple and added,
so it can be maintained incrementally on both assert and retract and the sum
is independent from the irrelevant order of the triples.

e Each triple is represented by the atom-handle for the subject, predicate-
pointer, atom-handle or literal pointer for object, a pointer to the source,
a line number, a general bit-flag field and 6 hash-next pointers covering all
indexing patterns except for +,+,+. The un-indexed table is a simple linked
list. The others are hash-tables that are automatically resized if they become
too populated.

The store itself does not allow for writes while there are active reads in progress.
If another thread is reading the write operation will stall until all threads have
finished reading. If the thread itself has an open choicepoint a permission error
exception is raised. To arrive at meaningful update semantics we introduced trans-
actions. The thread starting a transaction obtains a write-lock, initially allowing
readers to proceed. During the transaction all changes are recorded in a linked list
of actions. Assert actions carry the new triple as data, delete actions hold a pointer
to the triple-to-delete. If the transaction is commited the thread denies access for
new readers and waits for all readers to vanish before updating the database and
releasing the locks. Transactions are realised by rdf_transaction(:Goal). If Goal
succeeds, its choicepoints are discarded and the transaction is committed. If Goal
fails or raises an exception the transaction is discarded and rdf_transaction/1 re-
turns failure or exception. Transactions can be nested. Nesting a transaction places
a transaction-mark in the list of actions of the current transaction. Committing im-
plies removing this mark from the list. Discarding removes all action cells following
the mark as well as the mark itself.

It is possible to monitor the database using rdf monitor(:Goal, +FEvents).
Whenever one of the monitored events happens Goal is called. Modifying actions
inside a transaction are called during the commit. Modifications by the monitors
are collected in a new transaction which is committed immediately after complet-
ing the preceeding commit. Monitor events are assert, retract, update, new_literal,
old literal, transaction begin/end and file-load. Goal is called in the modifying
thread. As this thread is holding the database write lock all invocations of monitor
calls are fully serialized.

12 J. Wielemaker, Z. Huang and L van der Meij

Although the 12,000 triples per second of the RDF/XML parser ranks it among
the fastest parsers, loading 10 million triples takes nearly 15 minutes. For this reason
we developed a binary format. The format is described in ()
and loads over 20 times faster than RDF /XML, while using about the same space.
The format is independent from byte-order and word-length (32/64 bit machines).
TBD: Verify numbers; these are old

Persistency is achieved through the library rdf_persistency.pl, which moni-
tors the database to maintain a set of files in a directory. Each source known to the
database is represented by two files, a file representing the initial state using the
quick-load binary format and a file containing Prolog terms representing changes,
called the journal. Full reliability can be achieved by flushing the Prolog streams
after each change and enabling synchronous write on the file. Our current imple-

mentation flushes the Prolog streams, but does not use synchronous write to the
file.

3.3 Reasoning with RDF documents

We have identified two approaches for reasoning on top of the plain RDF predicate
for more high-level languages such as RDFS or OWL. One approach is taken by the
SeRQL query system described in Sect. 6. It is based on the observation that these
languages provide rules to deduce new triples from the set of known triples. The
APT for high level languages is now simply the rdf/3 predicate, where rdf(S,P,0)
is true for any triple in the deductive closure of the original triple set under the
given language. The deductive closure can be realised using full forwards reasoning,
deducing new triples until this is no longer possible or by a combination of backward
reasoning and forward reasoning. An alternative approach is to consider RDFS or
OWL at the conceptual level and introduce a set of predicates that are inspired
on this level. This approach is taken by our library rdfs.pl, defining predicates
such as rdfs_individual_of(?Resource, ?Class), rdfs_subclass_of(?Sub, ?Super).
Figure 9 explains the difference in the approaches.

4 Supporting HTTP

HTTP, or HyperText Transfer Protocol, is the key W3C standard protocol for
exchanging web-documents. All browsers and web-servers such as Apache TBD:
ref implement it. The initial version of the protocol was very simple. The client
request consists of a single line of the format (action) (path), the server replies
with the requested document and closes the connection. Version 1.1 of the protocol
is more complicated, providing additional name-value pairs in the request as well
as the reply, features to request status such as modification time, transfer partial
documents, etcetera.

When considering HT'TP support in Prolog, we must consider both the client-
and server-side. In both cases our choice is between doing it in Prolog or re-use
an existing application or library by providing and interface for it. We compare

SWI-Prolog and the Web 13

% triples

mary rdf:type woman .

women rdf:type rdfs:Class .
women rdf:subClass0f human .
human rdf:type rdfs:Class .

% entailment interface

?7- rdf (mary, rdf:type, X).

X = woman ;
X = human ;
No

% RDFS interface
?- rdfs_individual_of (mary, Class).

X = woman ;
X = human ;
No

Fig. 9. Different interface styles for RDFS

our work to PiLLoW () and the ECLiPSe HTTP
services ().

Given a basic TCP /IP socket library, writing an HT'TP client is trivial (our basic
client is 258 lines of code). Both PiLLoW and ECLiPSe include a client written in
Prolog. More issues complicate the choice for a pure Prolog based server.

e The server is more complex, which implies there is more to gain by re-using
external code. Our core server library counts 1,784 lines.

e A single computer can only host one server at the default TCP port 80.
Using alternate ports often conflicts with firewall or proxy settings. This can
be solved using a proxy server, such as the Apache mod_prozy, where the
public Apache server redirects part of the website to the Prolog server.

e Servers by definition introduce security riscs. Administrators are reluctant to
see non-proven software in the role of a public server. Using a proxy as above
also reduces this risc, especially if the proxy blocks malformed requests.

Dispite the observations, like the ECLiPSe developers, we consider a pure Prolog
based server worthwhile. As argued in Sect. 5.1, many Prolog web-applications profit
from using state stored in the server or large resources such as WordNet TBD: ref
cause long startup times. In such cases the use of CGI (Common Gateway Interface)
is not appropriate as this starts a new copy of the application for each request.
PiLLoW resolves this issue using Active Modules, where a simple CGI application
talks using a private protocol to a continuously running Prolog server. Using a
Prolog HTTP server and the Apache mod_proxy approach has the same benifits,
but uses a standard protocol and is much more flexible as we can also deploy the
Prolog server directly.

Another approach is embedding Prolog in another server like the Java based
Tomcat server TBD: ref. Although feasible, embedding non-Java based Prolog

14 J. Wielemaker, Z. Huang and L van der Meij

application inetd_http.pl
N
€
t
http_open.pl http_client.pl http_wrapper.pl xpce_http.pl w
C
t i '
k
http_header.pl thread_http.pl

Fig. 10. Module dependencies of the HT'TP library

systems in Java is complicated. Embedding through jni introduces platform and
Java version dependent problems. Connecting Prolog and Java concurrency models
and garbage collection is difficult and the resulting system is much harder the
manage by the user than a pure Prolog based application.

In the following sections we describe our HTTP client and server libraries. An
overall overview of the modules and their dependencies is given in Fig. 10.

4.1 HTTP client libraries

We support two clients. The first is a very lightweight client that is
only capable of supporting the HTTP GET method. Its interface is
http_open(+URL, -Stream, +Options). Options allows for setting a timeout or
proxy as well as getting information from the reply-header such as the size of the
document. The http_open/3 predicate internally handles HTTP 3XX (redirect)
replies. Other non-ok replies are mapped to a Prolog exception. After reading the
document the user must close the returned stream-handle using the standard Pro-
log close/1 predicate. This predicate makes accessing an HTTP resource as simple
as accessing a local file. The second library called http_client.pl is more compli-
cated. Providing support for HI'TP POST and a plugin interface that allows for in-
stalling handlers for documents of specified MIME-types it shares http_header.pl
with the server libraries for creating and analyzing HT'TP headers. Currently pro-
vided plugins include http mime _plugin.pl to handle multipart MIME messages
and http_sgml_plugin.pl for automatically parsing HTML, XML and SGML doc-
uments. Figure 11 shows the code for fetching a URL and parsing the returned
HTML document it into a Prolog term as described in Sect. 2.

Both the PiLLoW and ECLiPSe approach return the documents content as a
string. Our interface is stream-based (http_open/3) or allows for plugin-based pro-
cessing of the stream (http_get/3 and http_post/4). This interface avoids po-
tentially large intermediate datastructures and allows for processing unbounded
documents.

SWI-Prolog and the Web 15

?- use_module(library(’http/http_client’)).
?- use_module(library (*http/http_sgml_plugin’)).

7- http_get ("http://www.swi-prolog.org/’, DOM, [1).
DOM = [element(html, [version=’-//W3C//DTD HTML 4.0 Transitional//EN’],
[element (head, [1,
[element (title, [],
[’SWI-Prolog\’s Home’]),

Fig. 11. Fetching an HTML document

:— use_module(library(’http/thread_httpd’)).

start_server(Port) :-
http_server(reply, [port(Port)]).

reply(Request) :-
format (’Content-type: text/plain™n"n’),
writeln(Request).

Fig. 12. A simple HTTP server

4.2 The HTTP server library

The server library shares a large part of its implementation with http_post/4 from
the client library in creating and parsing the HT'TP headers. Both to simplify re-use
of application code and to make it possible to use the server without committing
to a large infrastructure we adopted the reply-stragety of the CGI protocol, where
the handler writes a page consisting of an HTTP header followed by the document
content. The only obligatory field in the header is the Content-type. Other fields
such as the Content-length are filled in by the server, which also takes care of
relaying the data to the client. Figure 12 provides a simple example that returns
the request-data to the client. By importing thread_http.pl we implicitely selected
the multi-threaded server model. Other models provided are inetd_http, causing
the (Unix) inet deamon to start a server for each request and xpce_http which uses
I/O multiplexing based on select() to talk to multiple clients without using Prolog
threads. The logic of handling a single HTTP request given a predicate realising
the handler, an input and output stream is implemented by http_wrapper.

Replies other than “200 OK” are generated using an exception. For ex-
ample to indicate the user has no access to a page we must use the fol-
lowing code fragment. Other recognised replies are defined by the predicate
http_reply(+Reply, +Stream, +HeaderExtra). Other exceptions raised by the han-
dler cause a “500 Server error” reply.

L

throw(http_reply(forbidden(URL))) .

16 J. Wielemaker, Z. Huang and L van der Meij

reply(Request) :-
http_parameters(Request,
[title(Title, [optiomnal(true)]l),
name (Name, [length >= 2]),
age (Age, [integer])
D,

Fig. 13. Fetching HTTP form data

4.2.1 Form parameters

The library http_parameters.pl defines http_parameters(+Request, ?Parameters)
to fetch and type-check parameters transparently for both request GET and POST
data. Figure 13 illustrates the functionality. Parameter values are returned as atoms.
If large documents are transferred using a POST request this may be undesirable
and the user may wish to revert to http_read_data(+Request, -Data, +Options)
which is also used by http_get/3 to process arguments using plugins.

4.2.2 Session management

The library http_session.pl provides session over the stateless HI'TP protocol. It
does so by adding a cookie using a randomly generated code if no valid session id is
found in the current request. The interface to the user consists of a predicate to set
options (timeout, cookie-name and path) and a set of wrappers around assert/1
and retract/1, the most important of which are http_session_assert(+Data),
http_session_retract(?Data) and http_session_data(?Data). In the current ver-
sion the data associated with sessions that have timed out is simply discarded.
Session-data does not survive the server.

Note that a session generally consists of a number of HT'TP requests and replies.
Each request is scheduled over the available worker threads and requests belonging
to the same session are therefore normally not handled by the same thread. This
implies no session state can be stored in global variables or in the control-structure
of a thread. If such style of programming is wanted the user must create a thread
that represents the session and setup communication from the HTTP-worker thread
to the session thread. Figure 14 illustrates the idea.

4.2.83 Evaluation

Table 2 shows performance testing using a trivial query using http_get/3 and
server using the multi-threaded server model. Tests were executed on a dual AMD
1600+ running SWI-Prolog 5.6.10 on SuSE Linux 10.0.

5 Enabling extensions to the Prolog language

SWI-Prolog has been developed in the context of projects and many leading projects
in the past 5 years caused the development to focus on managing web documents

SWI-Prolog and the Web 17

reply(Request) :- % HTTP worker
(http_session_data(thread(Thread))
-> true

; thread_create(session_loop([]), Thread, [detached(true)]),
http_session_assert(thread(Thread))

),

current_output (CGIOut),

thread_self (Me),

thread_send_message(Thread, handle(Request, Me, CGIOut)),

thread_get_message(Status).

(Status == true

-> true
; Status == exception(Term)
-> throw(Term)
).
session_loop(State) :- % Session thread

thread_get_message (handle(Request, Sender, CGIOut)),
catch(next_state(Request, State, NewState, CGIOut), E, true),
(var (E)

-> thread_send_message(Sender, true),

session_loop (NewState)

thread_send_message(Sender, exception(E))

Fig. 14. Managing a session in a thread. The reply/1 predicate is part of the
HTTP worker pool, while session_loop/1 is executed in the thread handling the
session.

Connection Elapsed Server CPU Client CPU

Close 20.84 11.70 7.48
Keep-Alive 16.23 8.69 6.73

Table 2. HTTP performance executing a trivial query 10,000 times. Times are in
seconds.

and protocols. In the previous sections we have described our web-enabling libraries.
In this section we describe extensions to the ISO-Prolog standard (

) we consider crusial for scalable and comfortable deployment of Prolog as an
agent in a web-centered world.

5.1 Multi-threading

Concurrency is a necessary property for real-world web-applications for reasons we
describe below.

o Network delays may cause communication of a single transaction to take
very long. Such clients should not block access for other clients. This can be

18 J. Wielemaker, Z. Huang and L van der Meij

achieved using multiplexed I/0, for example based on the POSIX select()
API, multiple processes handling requests in a pool or multiple threads in
one or more processes handling requests in a pool.

e CPU intensive services must be able to deploy multiple CPUs. This can
be achieved using multiple instances of the service and some form of load-
balancing or a single server running on multi-processor hardware or a combi-
nation of the two.

As indicated, none of the requirements above require multi-threading support in
Prolog. Nevertheless, we added multi-threading () because it re-
solves the problems menitioned above for medium-scale applications while greatly
simplifying deployment and debugging in a platform independent way. A multi-
threaded server also allows maintaining state for a specific session or even shared
between multiple sessions simply in the Prolog database. This is particulary inter-
esting for accessing the RDF database described in Sect. 3.2.

5.2 Unicode support

Unicode® is a character encoding system that assignes unique code-points to all
characters of almost all scripts known in the world. In Unicode 4.0, the code-points
range from 1 to Ox10FFFF. Unicode allows for handling documents from different
scripts and documents using multiple scripts easily and transparently, a feature
that is very important in a general web-processing application. Even traditional
HTML applications use it to insert special characters through entities such as the
copyright (©) sign, greek and mathematical symbols, etc. As illustrated in the
famous Semantic Web layer cake in Fig. 15, Unicode is at the heart of the sematic
web.

For HTML we could represent text using Prolog strings. As lists of Prolog integers
a string is capable of representing the full Unicode set. As we have claimed in
Sect. 2 however, using Prolog strings is not the most obvious choice. Please also
note that both XML attribute names and values can contain arbitrary Unicode
characters, requiring the unnatural use of strings for these as well. If we consider
RDF, URIs can have arbitrary Unicode characters TBD: ref! and we want to
represent URIs as atoms to exploit compact storage as well as fast equivalence
testing. Without Unicode support in atoms we could use a cannonical version of the
standard encoding of Unicode URIs in ASCII, which first encodes the Unicode string
using UTF-8 and uses the %XX notation for all characters except for ‘standard’
ASCII characters. TBD: Improve description, give example using Greek
(Chinese?) to show what it looks like.

All these work arounds TBD: better word can be avoided by introducing
Unicode in the Prolog kernel. Allowing atoms to contain arbitrary long sequences
of arbitrary Unicode characters we can represent text in Web markup languages
uniformly and without loss.

5 http://www.unicode.org/

http://www.unicode.org/

SWI-Prolog and the Web 19

Ontalogy
RDF Schema
ROF Model & Syntax

Signature
Encryption

Mamespaces

Fig. 15. The Semantic Web layer cake by Tim Burners Lee

SWI-Prolog internally uses a dual representation, one for 8-bit atoms using ISO-
8859-1 encoding (Latin-1, a sub-set of Unicode) and one using the C wchar_t rep-
resentation. The dual representation is completely hidden from the Prolog user.
It is exposed to users of the foreign language interface, providing wide-character
versions for the text-exchange functions. One of the motivations for using the dual
representation over UTF-8 is that SWI-Prolog users commonly represent arbitrary
binary data in atoms and using UTF-8 internally would break this.

5.3 Atom handling

We have already concluded that Unicode and unlimited length of atoms simplify
web document processing. Continuously running servers however also must avoid
memory leaks and therefore processing dynamic data using atoms requires atom
garbage collection.

6 Case study — A Semantic Web Query Language

In this case-study we describe the SWI-Prolog SeRQL implementation.® SeRQL is
an RDF query language developed as part of the Sesame project” (

6 http://www.swi-prolog.org/packages/SeRQL
7 http://www.openrdf .org

http://www.swi-prolog.org/packages/SeRQL
http://www.openrdf.org

20 J. Wielemaker, Z. Huang and L van der Meij

Network
XML/RDF HTML
over over
HTTP HTTP
SeRQL

HTTP API User Frontend

Query Optimiser —| SeRQL parser

o

R
RDF I/O Login & user

RDF Entailment RDFS Entailment Management

‘ RDF-Library ‘ ‘ HTTP Server Library ‘

Fig. 16. Module dependencies of the SeRQL system. Arrows denote ‘imports from’
relations.

:— module(rdf_entailment, [rdf/3]).

rdf(s, P, 0) :-

rdf_db:rdf (S, P, 0).
rdf (S, rdf:type, rdf:’Property’) :-

rdf _db:rdf(_, S, _),

\+ rdf_db:rdf (S, rdf:type, rdf:’Property’).
rdf (S, rdf:type, rdfs:’Resource’) :-

rdf _db:rdf_subject(S),

\+ rdf_db:rdf (S, rdf:type, rdfs:’Resource’).

:- multifile serql:entailment/2.
serql:entailment (rdf, rdf_entailment).

Fig. 17. RDF entailment module

2002). SeRQL uses HTTP as its access protocol. Sesame consists of an implemen-
tion of the server as a Java servled and a Java client-library. By implementing a
compatible framework we made our Prolog based RDF storage and reasoning en-
gine available to Java clients. The Prolog SeRQL implementation uses all of the
described SWI-Prolog infrastructure and building it has contributed significantly.
Figure 16 lists the main components of the server.

The entailment modules are plugins that implement the entailment approach to
RDF reasoning described in Sect. 3.3. They implement rdf/3 as a pure predicate,
adding implicit triples to the raw triples loaded from RDF/XML documents. Fig-
ure 17 shows the somewhat simplified entailment module for RDF. The multifile
rule registers the module as entailment module for the SeRQL system. New mod-
ules can be loaded dynamically into the platform, providing support for other SW
languages or application-specific server-side reasoning. Prolog’s dynamic loading
and re-loading allows for updating such reasoning modules on the life server.

The SeRQL parser is a DCG-based parser translating SeRQL source into a com-
pound goal calling rdf/3 and predicates from the SeRQL runtime library which

SWI-Prolog and the Web 21

rdf (Paper, author, Author),
rdf (Author, name, Name),
rdf (Author, affiliation, Affil),

Fig. 18. Split rdf conjunctions. After executing the first rdf/3 query Author is
bound and the two subsequent queries become independent. This is also true for
other orderings, so we only need to evaluate 3 alternatives instead of 3! (6).

provides comparison and functions built into the SeRQL language. The resulting
control-structure is passed to the query optimiser () which uses
statistics maintained by the RDF database to reorder the pure rdf/3 calls for
best performance. The optimiser uses a generate-and-evaluate approach to find the
optimal order. Considering the frequently long conjunctions of rdf/3 calls, the con-
junction is split into independent parts. Figure 18 illustrates this in a very simple
example. During abstract execution, information on instantiation and types im-
plied by the runtime library predicates is attached to the variables using dynamic
attributed variables. ().

HTTP access consists of two parts. The human-centered portal consists of HTML
pages with forms to administer the server as well as view statistics, load and unload
documents and run SeRQL queries presenting the result as an HTML table. Dy-
namic pages are generated using the html write.pl library described in Sect. 2.2.
Static pages are served from HTML files by the Prolog server. Machines use HT'TP
POST requests to provide query data and get a reply in XML or RDF/XML.

The system knows about various RDF input and output formats. To reach mod-
ularity the kernel exchanges RDF graphs as lists if terms rdf(S,P,0) and result-
tables as lists of terms using the functor row and arity equal to the number of
columns in the table. The system calls a multifile predicate using the format
identifier and data to realise the requested format. The HTML output format
use html write.pl. The RDF/XML format uses rdf_write_xml/2 described in
Sect. 3.1. Both rdf_write_xml/2 and the other XML output format use straight
calls format /3 to write the document, were quoting values is realised by quoting
primitives provided by the SGML/XML parser described in Sect. 2. Using direct
writing instead of techniques described in Sect. 2.2 avoids potentionally large inter-
mediate datastructures and is not very complicated given the very simple structure
of the documents.

6.1 FEwvaluation

The SeRQL server and the SWI-Prolog library development is too closely integrated
to use it as an evaluation of the functionality provided by the web enabling libraries.
We compared our server to Sesame, written in Java. The source code of the Prolog
based server is 6,700 lines, compared to 86,000 for Sesame. As both systems have
very different coverage in functionality and can re-use libraries at different levels
it is hard to judge these figures. Both answer trivial queries in approximately 5ms

22 J. Wielemaker, Z. Huang and L van der Meij

on a dual AMD 1600+ PC running Linux 2.6. On complex queries the two systems
perform very different. Sesame’s forward reasoning make it handle some RDFS
queries much faster. Sesame does not contain a query optimizer which cause order-
dependent and sometimes very long response times on large conjunctions.

The power of LP where programs can be handled as data is exploited by parsing
the SeRQL query into a program, optimizing the program by manipulating it as
data, after which we can simply call it to answer the query. The non-deterministic
nature of rdf/3 allow for a trivial translation of the query to a non-deterministic
program that produces the answer on backtracking.

The server only depends on the Prolog file and the standard Prolog libraries.
It runs unmodified on all systems supporting SWI-Prolog and has been tested on
Windows, Linux and MacOS X.

All infrastructure described is used in the server. We use format /3, exploiting
XML quoting primitives provided by the Prolog XML library to print highly repet-
itive XML files such as the SeRQL result-table. Alternatively we could have created
the corresponding DOM term and call xml_write/2 described in Sect. 2.1. TBD:
Try and compare

7 Case study — XDIG
7.1 Introduction

Ontology management and reasoning about ontologies have become important is-
sues for Semantic Web applications. Description Logics (DL) underpins the Web
Ontology Language OWL-DL. DL-based reasoners, like Racer and FACT++4, have
become popular tools for ontology reasoning in the Web. The DIG description
logic interface (), DIG interface for short, which is defined by
the Description Logic Implementation Group (DIG)®, provides a convenient high-
level interface for DL reasoners. Many DL reasoners support the DIG interface and
therefore more easily allow for the construction of highly portable and reusable
components or extensions.

Most DL reasoners only support standard DL reasoning. The features are well
formalized in the basic framework of Description Logics(). How-
ever, a lot of Semantic Web applications may require non-standard DL reasoning
services, like reasoning with inconnsistent ontologies, diagnosis and repair of incon-
sistent ontologies, reasoning with multi-version ontologies, and consistent ontology
evolution and changes. Those non-standard DL reasoning have been proved to be
very useful for practial Semantic Web applications(;

).

In this section, we describe a DIG DL interface extension that, from a client
application point of view, defines both DL reasoner services and special purpose
services as provided by an intermediate extended description logic server; as a

8 http://dl.kr.org/dig/

SWI-Prolog and the Web 23

regular DIG client, an intermediate server can call an external DL reasoner which
supports the DIG interface.

This extended DIG description logic interface, called XDIG, has been imple-
mented as a package for Prolog. We will describe the extended description logic
interface for Prolog in detail.

The XDIG has been used to develop non-standard DL reasoning services in the
SEKT project?. The following open-source systems are powered by XDIG.

e PION: PION is a reasoning system that deals with inconsistent ontologies'?.
PION supports TELL requests both in DIG and OWL, and ASK requests in
DIG(;).

¢ MORE: MORE is a Multi-version Ontology REasoner which is based on a
temporal logic approach ''. MORE supports variant queries, including tem-
poral reasoning queries, ontology comparison queries, and version retrieval

queries().
e DION: DION (a Debugger of Inconsistent ONtologies) is a system for diag-
nosis and repair of inconsistent ontologies®?().

DION supports multiple ontology languages: DIG data format and OWL.

In this section we will describe how XDIG is used to develop PION for reasoning
with inconsistent ontologies, as an example of XDIG for the development of ontology
management and reasoning system by using Prolog.

7.2 Extended DIG Description Logic Interface
7.2.1 The DIG DL Interface

The DIG interface is defined as a simple API for a general description logic sys-
tem(). It uses a similar mechanism as SOAP (Simple Object
Access Protocol), which has XML-based messaging protocols on top of HTTP.

Clients of a DL reasoner communicate through the use of HT'TP POST requests.
The body of the request is an XML encoded message which corresponds to the DL
concept language. The DIG concept language is a description logic that includes
the standard boolean concept operators, universal and existential restrictions, and
other issues. A TELL request is used to assert DL statements in the knowledge base
of the DL reasoner. An ASK request is used to perform knowledge base queries.
In addition, management requests are used to maintain the knowledge base of
DL reasoners or to obtain particular information of the system, like a reasoner
identification. See () for more DIG description logic interface
details.

9 http://www.sekt-project.com
10 http://wasp.cs.vu.nl/sekt /pion
M http://wasp.cs.vu.nl/sekt /more
12 http:/ /wasp.cs.vu.nl/sekt /dion

24 J. Wielemaker, Z. Huang and L van der Meij

Application/ | .| XDIG DIG _ | External
GUI) "l Server Client | Reasoner

Main Control Component

Ontology
Repository

Fig. 19. Architecture of XDIG.

7.2.2 Architecture of XDIG

The XDIG libraries may be used to build DL reasoners that have additional reason-
ing capabilities. It is not necessary for extended Prolog-based DL reasoning systems
to incorporate their own DL reasoning component. Several well-known DL reason-
ers exist (e.g. Racer()) and an extended DL reasoner will
access an existing external reasoner via its DIG interface.

In general, extended DL reasoners should be able to serve as a regular DL rea-
soner via their corresponding DIG description logic interface. Moreover, they will
provide particular supplementary reasoning facilities. An intermediate extended
DIG server can make systems independent of particular application specific charac-
teristics, which significantly improves the reusability and applicability of software
components; a highly decoupled infrastructure is usually beneficial for the construc-
tion of domain-specific services.

The general architecture of XDIG is shown in Figure 19. It consists of the fol-
lowing components:

o XDIG Server: The XDIG server deals with requests from ontology appli-
cations. It supports the extended DIG interface, i.e. it not only supports
standard DIG/DL requests, like ’tell’ and ’ask’, but also additional process-
ing features, like the identification of the reasoner and the change of system
settings.

e DIG Client: XDIG is designed to rely on an external DL reasoner. It has a
regular DIG interface client layer and calls the external DL reasoner in order
to access the standard DL reasoning capabilities.

e Main Control Component: In order to provide its own control processing,
XDIG has the main control component, which implements a general pro-
cessing framework, like query analysis, query pre-processing, and a reasoning
strategy, by interacting with local ontology repository.

e Ontology Repository: Ontology Repository serves as an internal knowl-
edge base, which is used to store multiple ontologies locally. These ontology

SWI-Prolog and the Web 25

statements are used for further processing when the reasoner receives an ASK
request. The main control component usually selects some parts of ontologies
to post them to an external DL reasoner in order to obtain the correspond-
ing answers. This internal KB is also used to store system settings and other
additional information about the system.

7.2.8 XDIG Prolog Libraries

The XDIG prolog package consists of the following libraries: dig_client, dig_server,
dig_process, dig_db, and dig_client_setting.

e The library dig_client provides the mechanism to call an external DL reasoner.
It defines the predicate: dig_post(+Data, —Reply, +Options) posts the data
to the external DIG server with Options that are permitted by the HTTP
POST request. The reply Reply from a DIG server has the form anwer(Header,
Elements) where Header is the header of the response and Elements an XML
element list which corresponds to the body of the DIG server response.

e The library digserver provides a mechanism to build a HTTP server
which supports the XDIG interface. It defines the following predi-
cates: dig_server(+Request) processes a client’s Request. It serves as the
main entry point for the server, which is launched by an http_server
process. XDIG server developers have to define their own predicate
my_dig_server_processing(+Data, — Answer, +Options) to handle the cor-
responding Data (i.e. the body of a request without a header) and Answer.
A XDIG server can be launched from a Prolog program by means of Prolog’s
HTTP server library as it has been discussed in Section 4.2:

:— http_server(dig_server, [port(8001)]).

e The library dig_process provides the main predicates to process XDIG
messages. It defines several data conversion predicates, like these:
xml_elements(+RawText, —X M LElements, —H eader) translates a
raw text reply from the server into a body with a list of elements
and a text header. elements_axmltext(+XMLElements,—XM LText
translates a list of XMLElements to an XML-encoded text.
dig_requestdata_analysis(+ Request Data, —Data, —Type) gets the Data
body from RequestData with type Type, where Type can be one of : asks,
tells, getldentifier, etc.

e The library dig.db provides facilities to maintain the ontology repos-
itory. It defines the following predicates: dig-assert_data(+I1D,+Data)
asserts a data statement into the knowledge base with identifier ID.
dig-db_element(+1D,?Element) checks or gets an Element from the knowl-
edge base ID.

e The Library dig_client_setting is used to manage the settings of the corre-
sponding external DIG DL server.

26 J. Wielemaker, Z. Huang and L van der Meij

Application/ | .| PION DIG _ | External
GUI) "l Server Client | Reasoner

Main Control Component

M S

Selection
Functions

Ontology
Repository

Fig. 20. Architecture of PION.

7.3 PION: a System of Reasoning with Inconsistent Ontologies
Powered by XDIG

The classical entailment in logics is explosive: any formula is a logical consequence
of a contradiction. Therefore, conclusions drawn from an inconsistent knowledge
base by classical inference may be completely meaningless. In (),
a general framework for reasoning with inconsistent ontologies is propoed. The main
idea of PION is as follows: given a selection function, which can be based on the
syntactic or semantic relevance as used in computational linguistics, we can always
select some consistent sub-theory from an inconsistent ontology. Then we apply
standard reasoning on the selected sub-theory to find meaningful answers. If it can-
not give a satisfying answer, the selection function will loosen the relevance degree
to obtain a consistent sub-theory for further reasoning. A PION serves as a DL
reasoner via its own XDIG interface. It is designed to be a simple API for a general
reasoner with inconsistent ontologies. It supports DIG requests from other ontology
applications or other ontology and metadata management systems. Therefore, the
implementation of PION will be independent of those particular applications and
systems.

The PION architecture is an extended XDIG system with an additional compo-
nent for selection functions, as shown in Figure 20. The selection function compo-
nent as an enhanced component to XDIG defines the selection functions that can
be used in the reasoning process.

PION is implemented by means of the XDIG libraries. The predicate
‘my_dig_server_ processing’ serves as the standard entry point of the server and
is defined for processing the ’tell’ and ’ask’ messages, as shown in the following.
For a TELL request, PION stores the data into its own local ontology repositories.
PION supports both the DIG data format and OWL. For the told data in OWL,
PION will call its owl support predicate owl2dig to convert the data in OWL into
one with DIG, i.e., the XDIG internal data format. For the ASK request, PION

SWI-Prolog and the Web 27

posts the stored data in the repositories, then performs the queries on the external
DL reasoner.

%deal with the tell request

my_dig_server_processing(RequestData, Answer, [connection(close)]):-
dig_requestdata_analysis(RequestData, Data, Type),
Type=tells,
!
dig_post (RequestData, Answer, [connection(close)]),
pion_setting(kb, KBID),
dig_assert_data(KBID, Data).

%deal with owl tell request
my_dig_server_processing(RequestData, Answer, [connection(close)]):-
dig_requestdata_analysis(RequestData, _Data, Type),
Type = ’rdf:RDF’,
I
owl2dig(RequestData, elements(L)),
dig_post(elements(L), Answer, [connection(close)]),
dig_get_element(L, E, _),
E = element(tells, _, L1),
pion_setting(kb, KBID),
dig_assert_data(KBID, L1).

%deal with the ask request
my_dig_server_processing(RequestData, Answer, _Options):-
dig_requestdata_analysis(RequestData, Data, Type),

Type=asks,

!

dig_post (RequestData, Answerl, [connection(close)]),
pion_answer_preprocessing(Answerl, Data, Answer).

If answers from the external reasoner do not specify particular error conditions,
which would mean that an ontology is consistent, PION uses the answers from the
external reasoner as its own answer to the applications. If the current ontology is
inconsistent, PION will start the inconsistency processing by launching a search
strategy, which uses one of selection functions in the system to find a relevant
and consistent subset of the current ontology and apply the selected subset to the
standard DL reasoner, as shown in the following:

pion_answer_preprocessing(Answerl, Queries, Answer):-
Answerl = answer(_Header, AnswerBody),
AnswerBody = [element(responses, _, Elements)|_],

28 J. Wielemaker, Z. Huang and L van der Meij

pion_setting(kb, KBID),
dig_consistent_check(kb(KBID), Status),

Status=false,
1

s

pion_setting(strategy, Strategy),
pion_inconsistency_processing(KBID, Queries, Elements, Strategy, Answer).

pion_answer_preprocessing(Answerl, _Queries, Answer):-
Answer = Answerl.

The PION testbed'? allows for query tests with a comparison of query answers
with PION and query answers without PION. Using a standard DL reasoner with-
out PION, queries on an inconsistent ontology will often result in many errors,
whereas queries on an inconsistent ontology with PION may result in intuitive an-
swers. The tests show that Prolog, more concretely XDIG, is a convenient tool for
non-standard DL reasoning services for the Semantic Web().

8 Case study — Facetted browser on Semantic Web database
8.1 Introduction

I will be adding unedited text for now. Absolutely not for reviewing yet. Am using
cvs for backup of files.

8.2 Introduction

Prolog has been in use in the section Al of the Computer Department at the Vrije
Universiteit for years. In the Multiagent group Prolog has proven to be an effective
programming language, especially for the implementation of rule based systems,
where some higher level reasoning language is defined. SWI-Prolog in particular
has proven very valuable here as a prolog environment because it made porting our
applications over multiple platforms (Windows, Unix, Linux) easy, it provides an
integrated GUI xpce, the SWI-Prolog has proven to be relatively stable over our
time of experience of 15 years and support was always great. TBD: Could very
well be not too relevant introduction.

For this case study we describe a project in the context of the “Semantic Web”:
It is a pilot project for the STITCH-project'* whose main aim is studying and
finding solutions for the problem of integrating vocabularies, classification systems
etc. in the Cultural Heritage domain.

In this CASE study we will not go into all details of the procedures and results of
our Pilot study, they will be described elsewhere, but focus on parts of the project
where SWI-Prolog played an illustrative role.

13 http://wasp.cs.vu.nl/sekt /pion
™ the STITCH project is a project within CATCH, funded by NWO TBD: more details

SWI-Prolog and the Web 29

The pilot consisted of the integration of two collections — the Medieval Illumina-
tions of the National Library of the Netherlands(Koninklijke Bibliotheek, abr. KB)
and the Masterpieces collection from the Rijksmuseum (National Museum) — and
developing a user interface for browsing the merged collections. One stringent re-
quirement was the use of “standard semantic web techniques” during all stages, so
as to be able to evaluate the added value SW techniques could bring. We expected
to benifit from the advance made in the field of “Ontology mapping”.

The problem could be split into three main tasks:

e Gathering of data, e.g. collections and thesauri and transforming them into
SW notions, e.g. RDF (thesauri:SKOS..)

e Establishing mappings between the vocabularies

e Building a prototype to access (search and browse) the integrated collections:
a web server.

For the Pilot project we did not develop ontology /structured vocabulary mappers
ourselves. In all other phases SWI-Prolog played an important role as implemen-
tation language. All phases, all procedures/programs interacted by means of RDF
files. This resulted in extensive use of SWI-Prologs rdf_db library.

8.3 Various Programs for transformation of data and construction of
thesauri

8.4 Multifaceted search

TBD: Find structure for telling our story, is there a generalizable ratio-
nale for using SWI-Prolog

TBD: Early on I should split this up into: 1)Access to the database,
querying 2)Generation of html code 3)Http web server

TBD: Hope to be able to evaluate SWI SeRQL - Sesame SeRQL: I
did very easily succeed in switching from sesame to SWI: I do have the
impression the performance is not as good: probably because we use
subClassOf a lot where SWI’s rdfs uses dynamical backtracking whereas
Sesame does “forward instantiation”. Might be an idea to provide the
sesame xml based forward rule system as one “entailment” variant. But
probably not relevant for this article

Multi faceted search is a search and browse paradigm where a collection is ac-
cessed by refining multiple (preferably) structured aspects of properties of elements
of the collection. For the user interface and user interaction we have been influenced
by the approach of FlamencoTBD: Reference.

An important part of the approach consists of providing all choices for refine-
ment to be made with a number, telling how much collection elements will remain
after applying the refinement defined by the choice. Important is that all choices
leading to 0 elements being found to not be presented to the userTBD: make the
sentence.

30 J. Wielemaker, Z. Huang and L van der Meij

8.4.1 Interaction with the RDF-store

For the pilot project we decided on delegating as much of the algorithm to Semantic
Web standard reasoning. We chose SeRQL. We started out using the sesame_client
library that is part of SWI-Prolog SeRQL library using it to access an external
Sesame web-server. We recently also started evaluating SWI-Prologs own SeRQL
implementation.

The role of Prolog in the interaction between the User Interface and the RDF
storage consisted mainly of building up complex SeRQL queries from URL query
arguments, passing them on to the SeRQL-engine, gathering the result rows and
filtering the output, mostly to provide a count of elements found. When using
SeRQL for Multi Faceted search, the lack of SQL like constructs such as count(..)
and group by is a shameTBD: Rephrase!.

Although post-processing of all our complex SeRQL queries needed similar ma-
nipulations we did not develop a generic procedure for this post processing.

TBD: Probably too vague, without concrete suggestions for it to me
kept in the text: For simplicities sake we decided to limit ourselves to only reading
from the rdf store, not asserting triples defining the current user query and formu-
lating a SeRQL query referring to those dynamically added RDF-triples. This did
imply that the SeRQL queries defining the refinement query had to be composed
from the user query not statically expressible in SeRQL syntax, the more complex
SeRQL queries had to be built up dynamically from the user query. We may inves-
tigate whether this may lead to suggestions for higher level additions to SeRQL.

Typical, more complex interaction:

matching_objects_annotated(SiteId, QueryFC, Objects) :-
query_select_all_short_fields_string(RecordMode,QAll),
add_queries_get_rows(SiteId, QAll, QueryFC, Rows),
(st_debugging
-> rec_short_fields_unique(Rows, SiteId, RecordMode, [], Objectsl)
; Objectsl = Rows
).
add_queries_get_rows(SiteId, QAll, QueryFC, Rows) :-
sformat (SA11l, QAll, [SiteId]),
construct_query_othersl(QueryFC, QL1),
mf_ns(NS) ,append(QL1, [NS], QL),
concat_atom([SA11|QL], Query),
ssm_query_bag(SiteId, Query, Rows).

query_select_all_short_fields_string(collections,
’select Rec, RecTitle, RecThumb, CollSpec
from {SiteId} rdfs:label {""w"};
rdf:type {mfs:SiteSetup};
mfs:collection-spec {CollSpec} mfs:record-type {RT};
mfs:shorttitle-prop {TitleProp};
mfs:thumbnail-prop {ThumbProp},

SWI-Prolog and the Web 31

{Rec} rdf:type {RT}; TitleProp {RecTitlel};ThumbProp {RecThumbl}’).

TBD: Either explain more of what takes place and show a typical result
of the SeRQL query or take out!

8.4.2 HTML code generation

We chose to use the SWI-Prolog html_write library for our HTML-code generation
after some evaluation of alternatives. The way the DCG-solution deals with open-
ing and closing tag consistency seemed attractive. Although we have no extensive
experience with alternatives, the html_write library proved to be very convenient.

There are three distinct kinds of web pages the multi faceted browser generates
(following the Flamenco approach and wordingTBD: rephrase):

Beginning: The page shown when entering the portal: An initial set of choices is
presented along which the user can start searching,

Middle Game The page that shows an overview of (part of) the elements that
fall under the current refinement and which may be selected individually, but
also lists of choicesTBD: wording along which the search can be refined.

End Game The page that shows the selected element of the collection with all
details available.

These three templates share a common header. The generation of the Facet choice
html code is shared between the first two pages.

The web page geration component consists of some 140 DCG rules, part of which
are simple list traversing rules such as

objectstr([],_0, _Cols,_Perc,_Args) --> [].

objectstr([0Objects|ObjectsList], Offset, Cols, Perc,Args) -->

html (tr(valign(top),\objectstd(Objects, Offset, Perc, Args))),
{ Offsetl is Offset + Cols 1},

objectstr(ObjectsList, Offsetl, Cols, erc, Args).

a detail of the html code generation for presenting the matching objects in an
HTML table.

Another example, the DCG-rule that generates the HTML code for one single
facet:

mffacet(Tree, Args) -->
{
mffacetheadercode(Tree, Args, SubFacets, FData, FCode,
FacetClass, Ql, Options)

},

html (table([border(0),class(FacetClass), cellspacing(0),
cellpadding(0), width(’100%’)],
[\facetheadertr(FData,Options),
\facetstr(SubFacets,Ql,FCode,Options)])).

32 J. Wielemaker, Z. Huang and L van der Meij

The DCG code generation library has not been used by use for such a long time
that we developed higer order meta-constructs (cf. maplist) defining for example
HTML tables.

Of course, DCG rules were reused for reoccurring HTML code parts, such as
generating identical header code for the three kinds of web pages.

TBD: Where oh where? The design and implementation of the web server
was such that practically all interaction with the user was stateless: User request
details were completely encoded in the URL: The Root of the URL determines the
configuration, the URL query parameters, the current user refinement plus action
necessary.

A configuration defines what collections are part of the setup plus what facets
are shown and very specific to our use case: what mappings are we taking into
consideration.

This information is completely propagated via Prolog call arguments. This proved
to make debugging very easy. If a bug was really hard to find, instead of activating
the web server we simply called the SWI-Prolog reply/1 callback after setting some
spypoint(s).
reply(Request) :-

select (path(Path), Request, Requestl),

options(Options),

reply(Path, Requestl,0Options).
tstsesame :-
tstsetup,
Optionsl = [protocol=’debuggingresult.html’,sesamestore=default],
Options = [httpargs=[swi=1]|0Optionsi],
Query = ’at:http_058_047_047www.telin.nl_047rdf_047topia_035Term27945’,
reply (’/SINGLEVIEW-ARIA-E-ALL’, [search([q=Query,index=12])], Options).

TBD: Too detailed ad hoc example?

9 Conclusion

References

BAADER, F., CALVANESE, D., MCGUINNESS, D. L., NARDI, D., AND PATEL-SCHNEIDER,
P. F., Eds. 2003. The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press.

BECHHOFER, S., MOLLER, R., AND CROWTHER, P. 2003. The DIG description logic
interface. In International Workshop on Description Logics (DL2003). Rome.

BROEKSTRA, J., KAMPMAN, A., AND VAN HARMELEN, F. 2002. Sesame: An architecture
for storing and querying rdf and rdf schema. In Proc. First International Semantic Web
Conference ISWC 2002, Sardinia, Italy. LNCS, vol. 2342. Springer-Verlag, 54—68.

CABEZA, D. AND HERMENEGILDO, M. V. 2003. Distributed WWW programming using
(ciao-)prolog and the piLLoW library. CoRR ¢s.DC/0312051.

DEMOEN, B. 2002. Dynamic attributes, their = hProlog implemen-
tation, and a first evaluation. Report CW 350, Department of
Computer Science, K.U.Leuven, Leuven, Belgium. oct. URL =

http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.

SWI-Prolog and the Web 33

DERANSART, P., ED-DBALI, A., AND CERVONI, L. 1996. Prolog: The Standard. Springer-
Verlag, New York.

HAARSLEV, V. AND MOLLER, R. 2001. Description of the racer system and its applica-
tions. In Proceedings of the International Workshop on Description Logics (DL-2001).
Stanford, USA, 132-141.

HUANG, Z. AND STUCKENSCHMIDT, H. 2005a. Reasoning with multiversion ontologies.
Project Report Deliverable D3.5.1, SEKT.

HUANG, Z. AND STUCKENSCHMIDT, H. 2005b. Reasoning with multiversion ontologies:
a temporal logic approach. In Proceedings of the 2005 International Semantic Web
Conference (ISWC2005).

HUANG, Z., VAN HARMELEN, F., AND TEN TEUJE, A. 2005. Reasoning with inconsistent
ontologies. In Proceedings of the International Joint Conference on Artificial Intelligence
- IJCAT’05.

HUANG, Z. AND VISSER, C. 2004. Extended DIG description logic interface support for
PROLOG. Deliverable D3.4.1.2, SEKT.

LETH, L., BONNET, P., BRESSAN, S., AND THOMSEN, B. 1996. Towards ECLiPSe agents
on the internet. In Proceedings of the 1st Workshop on Logic Programming Tools for
INTERNET Applications.

SCHLOBACHM, S. AND HUANG, Z. 2005. Inconsistent ontology diagnosis: Framework and
prototype. Deliverable D3.6.1, SEKT.

WIELEMAKER, J. 2003. Native preemptive threads in SWI-Prolog. In Practical Aspects of
Declarative Languages, C. Palamidessi, Ed. Springer Verlag, Berlin, Germany, 331-345.
LNCS 2916.

WIELEMAKER, J. 2005. An optimised semantic web query language implementation in pro-
log. In ICLP 2005, M. Baggrielli and G. Gupta, Eds. Springer Verlag, Berlin, Germany,
128-142. LNCS 3668.

WIELEMAKER, J., SCHREIBER, G., AND WIELINGA, B. 2003. Prolog-based infrastructure
for RDF: performance and scalability. In The Semantic Web - Proceedings ISWC’03,
Sanibel Island, Florida, D. Fensel, K. Sycara, and J. Mylopoulos, Eds. Springer Verlag,
Berlin, Germany, 644-658. LNCS 2870.

	Introduction
	Parsing and representing XML and HTML documents
	Generating documents from its Herbrand Term
	Generating documents using DCG
	Comparing to PiLLoW

	RDF documents
	Input and output of RDF documents
	Storage of RDF
	Reasoning with RDF documents

	Supporting HTTP
	HTTP client libraries
	The HTTP server library

	Enabling extensions to the Prolog language
	Multi-threading
	Unicode support
	Atom handling

	Case study --- A Semantic Web Query Language
	Evaluation

	Case study --- XDIG
	Introduction
	Extended DIG Description Logic Interface
	PION: a System of Reasoning with Inconsistent Ontologies Powered by XDIG

	Case study --- Facetted browser on Semantic Web database
	Introduction
	Introduction
	Various Programs for transformation of data and construction of thesauri
	Multifaceted search

	Conclusion
	References

